首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Moulting hormone levels for all stages of the life cycle of the desert locust, Schistocerca gregaria, have been determined using gas chromatography with electron capture detection of the trimethylsilylated hormones. During larval development, the major hormone detected is 20-hydroxyecdysone with smaller quantities of ecdysone present. In mature adult females the major ecdysteroid observed is a polar conjugate of ecdysone, with smaller quantities of conjugated 20-hydroxyecdysone also present. During embryonic development the pattern changes from a high proportion of conjugated ecdysone in the early stages to give more free hormone and a higher proportion of 20-hydroxyecdysone in later stages. The highest titre of 20-hydroxyecdysone found in this insect is during the 5th larval instar. Maximal levels of ecdysteroid per insect are found in mature females just before oviposition, while the highest level of ecdysteroid per g of tissue is found in the eggs.  相似文献   

2.
Summary WhenManduca sexta larvae are allatectomized 5 h before head capsule slippage (HCS) in the final larval molt, the new larval cuticle contains granules that melanize 3 h before ecdysis when the ecdysteroid titer falls (Curtis et al. 1984). In both the epidermis and hemolymph of these allatectomized larvae dopamine was higher than dopa prior to and at the time of melanization. Dopamine also increased in the new cuticle as melanization began. Dopa decarboxylase (DDC) activity increased in the epidermis, cuticle, and fat body beginning 16 h after HCS, with a two-fold greater increase in the epidermis of allatectomized larvae. Both -MDH and -fluoromethyl-dopa inhibited epidermal DDC activity and inhibited melanization in vitro when dopa was used as a precursor. Addition of dopamine to the medium allowed melanization in the presence of the inhibitors. All these results indicate that dopamine is likely the primary precursor of cuticular melanin. The diphenoloxidase in the premelanin granules was activated in vivo between 19 and 21 h after HCS and was found to prefer dopamine to dopa and not to convert tyrosine to melanin. The activation of the prophenoloxidase was inhibited by 20-hydroxyecdysone (20-HE), both in vivo and in vitro, if hormone was given by 16 h after HCS. Infusion of 1.2 g/ml 20-HE into allatectomized larvae for 24 h from HCS prevented both the increase in DDC activity and the activation of the premelanin granules. Although the larvae ecdysed after a 15 h delay, melanization never occurred.Abbreviations -MDH L-3-(3,4 dihydroxyphenyl)-2-hydrazine-methylpropionic acid - -FM-dopa R-S--fluoromethyl-dopa - DCC dopa decarboxylase - 20-HE 20-hydroxyecdysone - JH juvenile hormone - HCS head capsule slippage  相似文献   

3.
The ecdysteroid titre and the body weight during the last-larval instar of Ephestia kuehniella were determined. Slightly elevated ecdysteroid titres occur during the first 12 h following the last larval-larval ecdysis (38 ng/g) and again some 120 h later, lasting about 48 h (33 ng/g). A high ecdysteroid peak (750 ng/g) with a maximum in prepupae of the eye-class A4 precedes the larval-pupal ecdysis. The basal levels between these increased ecdysteroid titres are between 13 ng/g and 15 ng/g. Compared with the body weight, the first sligtly increased ecdysteroid titre 12 h after ecdysis is associated with the beginning of food intake, the second increase at 144 h after ecdysis with reduced gain in body weight. The prepupal ecdysteroid peak occurs whilst the body weight remains constant. Correlations between the varying ecdysteroid titre and morphological and physiological events accompanying the progress in larval-pupal development are discussed.  相似文献   

4.
The haemolymph ecdysteroids were examined in fifth-stage larvae of Nezara viridula, Podisus maculiventris and Dysdercus cingulatus (Hemiptera-Heteroptera) using high-pressure liquid chromatography to separate the ecdysteroids and a radioimmunoassay to detect the fractionated ecdysteroids. The length of the fifth stage ranged from 5 to 8 days, and a peak in ecdysteroid titre (1700–2650 ng/ml) occurred 2–3 days prior to ecdysis to the adult. An ecdysteroid matching the retention time of makisterone A (24-methyl-20-hydroxyecdysone) was clearly present in haemolymph taken at the time of peak titre in all 3 of these true bugs, whereas little, if any, ecdysone or 20-hydroxyecdysone was detected. These data, along with previously reported data for the milkweed bug Oncopeltus fasciatus, are persuasive evidence that makisterone A is the larval moulting hormone of a group of closely related Heteroptera called the Trichophora (Lygaeoida, Pentatomoidea, Pyrrhocoroidea and Coreoidea).  相似文献   

5.
Ecdysteroid titres in whole flies and different tissues of adult male and female Drosophila were determined at various times after eclosion using a radioimmunoassay. The ecdysteroid titre decreased as the flies matured after eclosion. The differences in titre between males and females can be accounted for by their difference in body weight. The ecdysteroids were found to be distributed throughout several tissues. At eclosion not all of the ecdysteroid complement present could be accounted for by that found localised in tissues. After maturation of the flies the ecdysteroids in various tissues can account for the majority of that detected in whole-fly extracts. Ecdysteroids were produced during in vitro culture of various tissues, but the quantities detected were low by comparison with ring glands of wandering 3rd-instar larvae. Neither the ovaries nor the abdominal body walls (fat body) seem to be a major source of hormone, and they are only able to convert minute quantities of ecdysone to the biologically active form, 20-hydroxyecdysone, in vitro. The amounts of 20-hydroxyecdysone present were measured using high performance liquid chromatography and radioimmunoassay. We tentatively suggest that the differential experession of the yolk-protein-genes in the fat bodies of males and females does not result from differences in hormone titres between them.  相似文献   

6.
Three storage proteins are synthesised by Spodoptera litura last-instar larvae as detected by an antiserum against pupal fat body proteins. The putative pupal storage proteins 1 and 2, appear in the haemolymph of the last-instar larvae 36 h after ecdysis under crowded rearing conditions: they appear 1 day later in isolated conditions. The appearance of these proteins in the haemolymph is prevented by juvenile hormone treatment and enhanced by allatectomy. Injection of 20-hydroxyecdysone into ligatured larvae does not induce appearance of these 2 proteins. Accumulation of protein 3 that reacts with Bombyx mori arylphorin antiserum is not blocked by juvenile hormone and is similar in both phases. It also accumulates to a small extent in the haemolymph during the moult to the final-larval instar and then disappears at ecdysis. One-hundred ng/ml ecdysteroid caused the sequestration of these proteins by the fat body, but a higher concentration of ecdysteroid (200 ng/ml) produced pupal cuticle in the isolated abdomens, suggesting that different ecdysteroid concentrations are necessary for these two events.  相似文献   

7.
A haemolymph ecdysteroid titre of the fifth (last)-larval instar of the hemipteran, Rhodnius prolixus has been determined by radioimmunoassay. During the last-larval stadium the ecdysteroid titre increases from a negligible level in the unfed insect to a detectable level within minutes following a blood meal. The titre reaches a plateau of ~50–70 ng/ml at 3–4 hr and this level is maintained until day 5–6, the time of the head-critical period in Rhodnius. At the head-critical period the titre begins to increase again, this time dramatically, reaching a peak of ~ 3500 ng/ml at day 13. From day 14 to ecdysis (day 21) the titre declines to a low level, ~ 30 ng/ml. Basal levels of ecdysteroids, ~ 15 ng/ml, were detectable in young adult males and females. A survey of haemolymph volumes during the last-larval instar indicates that the changes in the ecdysteroid titre reflect changes in the rates of ecdysteroid synthesis, and not changes in haemolymph volume. Excretion of ecdysteroids varies systematically during the instar, suggesting that control of ecdysteroid excretion may be important in regulation of the haemolymph titre. Qualitative analysis of the haemolymph ecdysteroid RIA activity revealed the presence of only ecdysone and 20-hydroxy-ecdysone. For the large peak preceding larval-adult ecdysis, 20-hydroxy-ecdysone was the predominant hormone. These results indicate that there may be two periods of release of prothoracicotropic hormone (PTTH) from the brain in Rhodnius, one immediately following the blood meal and the second on day 5 or 6. The significance of these times of PTTH release is discussed in relation to classical evidence of the timing of moulting hormone action, the response of target tissues, and with more recent findings on the timing of release of neurosecretory material from the brain of Rhodnius during moulting.  相似文献   

8.
The haemolymph ecdysteroid titre and in vitro capacities of prothoracic glands and corpora allata to synthesize ecdysone and juvenile hormone, respectively, during the last-larval instar of diapause-destined (short-day) and non-diapause-destined (long-day) Manduca sexta were investigated. In general, the ecdysteroid titres for both populations of larvae were the same and exhibited the two peaks characteristic of the haemolymph titre during this developmental stage in Manduca. The only difference in the titre occurred between day 7 plus 12 h and day 7 plus 20 h, when the short-day larval titre did not decrease as quickly as the long-day titre. The in vitro synthesis of ecdysone by prothoracic glands of short- and long-day larvae during the pharate pupal phase of the instar were also essentially the same. Activity fluctuated at times which would support the idea that ecdysone synthesis by the glands is a major contributing factor to the changes in the haemolymph ecdysteroid titre. There was one subtle difference in prothoracic gland activity between the two populations, occurring on day 7 plus 2 h. By day 7 plus 10 h, however, rates of ecdysone synthesis by the short- and long-day glands were comparable. This elevated activity of the short-day glands occurred just prior to the period the haemolymph ecdysteroid titre remained elevated in these larvae. The capacities of corpora allata to synthesize juvenile hormone I and III in vitro were not markedly different in long- and short-day last-instar larvae. At the time of prothoracicotropic hormone release in the early pupa, activity of corpora allata from short- and long-day reared animals was low and also essentially the same. There were a few differences in the levels of synthesis at isolated times, but they were not consistent for both homologues. Overall, there are no compelling differences in the fluctuations of ecdysteroids and juvenile hormones between diapause-destined and non-diapause-destined Manduca larvae. Since these hormones do not appear to play any obviously significant role in the induction of pupal diapause in this insect, the photoperiodic induction of diapause in Manduca appears to be a predominantly brain-centred phenomenon not involving endocrine effectors.  相似文献   

9.
Summary 20-hydroxyecdysone (20HE) injections induced transient delays in the time of ecdysis inRhodnius prolixus reared in L/D cycles. Sustained phase delays in the ecdysis rhythm were revealed by transfer to constant dark during the scotophase following 20HE injection. The magnitude of the phase delays depended on the time in the L/D cycle at which 20HE was injected with major delays occurring at times when the endogenous titre is declining. Therefore the increases and decreases in the endogenous titre which are themselves timed in a circadian fashion may be involved in phase setting the ecdysis rhythm to the environmental cycle. Populations maintained in LL which are arrhythmic with respect to both ecdysteroid titres and ecdysis, can be induced to display gated ecdysis by injection of either 20HE or antiserum to ecdysteroids. Multiple injections of 20HE or antiserum are capable of inducing an ecdysis rhythm whose period (22.3 h) and gate location are very similar to that produced by altering the environmental cycle. Therefore manipulations of the endogenous titre of ecdysteroids can mimic the effects of L/D cycles on the timing of ecdysis. Ecdysis inRhodnius may therefore be timed at least partially as a result of circadian timing of the ecdysteroid titre.Abbreviations AZT Arbitrary Zeitgeber Time - DD constant darkness - LL constant light - L/D 24 h light dark cycle - 12L/12D 12 h of light 12 h of dark - 20HE 20-hydroxyecdysone  相似文献   

10.
Changes in prothoracic gland morphology were correlated to developmental events and ecdysteroid titres (20-hydroxyecdysone equivalents) during the last-larval instar in Spodoptera littoralis. After ecdysis to the last-larval instar the haemolymph ecdysteroid titre remained at about 45 ng/ml, when the prothoracic glands appeared quiescent. The first signs of distinct gland activity, indicated by increased cell size and radial channel formation, were observed at about 12 h prior to the cessation of feeding (36 h after the last-larval moult), accompanied by a gradual increase in ecdysteroid titre to 110 ng/ml haemolymph, at the onset of metamorphosis. During this phase ecdysteroid titres remained at a constant level (140–210 ng/ml haemolymph) and prothoracic gland cellular activity was absent for a short period. The construction of pupation cells occurred when haemolymph ecdysteroids titres increased to 700 ng/ml. A rapid increase in ecdysteroids began on the fourth night (1600 ng/ml haemolymph) reaching a maximal level (4000 ng/ml haemolymph) at the beginning of the fourth day. In freshly moulted pupae a relatively high ecdysteroid titre (1100 ng/ml haemolymph) was still observed, although during a decrease to almost negligible levels. The increase in ecdysteroid level during the third and the fourth nights of the last-larval instar was correlated with the period when almost all the prothoracic gland cells showed signs of high activity. Neck-ligation experiments indicated the necessity of head factors for normal metamorphosis up to the second to third day of the instar. The possibility that the prothoracic glands are under prothoracicotropic hormone regulation at these times is discussed.  相似文献   

11.
The relationship between the ecdysteroid titre and eclosion hormone was explored for the pupal and adult ecdyses of Manduca sexta. Ecdysteroid treatment late during either moult caused a dosedependant delay in the time of ecdysis. Sensitivity to exogenous steroid treatment dropped off as the respective moults neared completion and in both cases coincided with the time of the low point in the endogenous ecdysteroid titre. It was concluded that an ecdysteroid decline is a normal prerequisite for the ecdyses of both stages. The steroid drop is important for two aspects of the eclosion hormone system: it causes target tissues to become sensitive to the peptide and it is a prerequisite for the subsequent release of eclosion hormone itself. Thus, the dual action of the declining ecdysteroid titre insures that when eclosion hormone is released, the tissues will be competent to respond to it.  相似文献   

12.
Changes in haemocoelic pressure have been studied after the injection of exogenous 20-hydroxyecdysone, using a special tensometric method. Application of the hormone before the endogenous peak of ecdysteroid causes an acceleration of the progressive changes in the pulsation pattern. When given during the endogenous ecdysteroid peak, 20-hydroxyecdysone produces a retention of the existing type of pulsation. Also, administration of the hormone after the endogenous peak induces a retardation in the developmental programme of the pulsations. Shortly before ecdysis, the exogenous hormone does not affect the pulsation programme or the ecdysis. These changes may represent an elegant example of a homeostatic function of ecdysteroids in insect development. Involvement of 20-hydroxyecdysone in regulation of the basic haemolymph pressure is discussed.  相似文献   

13.
The moulting glands of the milkweed bug, Oncopeltus fasciatus, normally degenerate just before the time of ecdysis to an adult (day 7 of the fifth instar). Morphologically normal cell death can be prematurely stimulated in vitro by 20-hydroxyecdysone. Breakdown is triggered by a 24-hr period of exposure to 20-hydroxyecdysone, but an additional incubation period is required before clear signs of degeneration are manifested. Glands removed after the onset of endogenous ecdysteroid secretion degenerate in vitro in the absence of added hormones. Thus, in the moulting glands of Oncopeltus, ecdysteroids appear to act as an important trigger for metamorphic cell death.  相似文献   

14.
15.
When tobacco hornworm larvae (Manduca sexta) are allatectomized 5-6 hr before head capsule slippage in the molt to the fifth (final) larval instar, the new cuticle melanizes 3 hr before ecdysis. After explantation between 7 and 3 hr before the onset of melanization, the new cuticle was found to melanize in vitro in Grace's medium only if beta-alanine was removed. When explanted at the onset of melanization, the presence of beta-alanine had no effect on melanization. The addition of either dopa or dopamine was found to be necessary for complete melanization of pieces explanted before the onset of melanization with 0.3 mM of either dopa or dopamine being optimal. Both of these compounds were incorporated into the cuticular melanin. In this optimal medium, melanization occurred over about a 9-hr period after a 5- to 6-hr lag period presumably required for adjustment to the medium. Fifty ng/ml 20-hydroxyecdysone was found to inhibit melanization of pieces explanted 7 hr but not 3 hr before melanization. The hormone neither inhibited uptake of dopa into the epidermis nor prevented melanization in the cuticle once the prophenoloxidase in the premelanin granules was activated. Therefore, 20-hydroxyecdysone may inhibit the activation of the phenoloxidase in the pre-melanin granules, or may inhibit the incorporation of dopa into the granules.  相似文献   

16.
Juvenile hormone has been detected in the haemolymph and corpora allata of adult male Locusta and the haemolymph of adult male Schistocera by a modified Galleria bioassay. The hormone was readily detected in the haemolymph of insects immediately after the final ecdysis, but then became difficult to detect until 2 days prior to the onset of sexual maturation. In sexually mature insects the titre of juvenile hormone was maintained at a constant level. The corpora allata of adult male Locusta increased in size throughout adult life. The juvenile hormone content of the corpora allata was low during the period of somatic growth, but increased at the onset of sexual maturation. Sectioning of the nervi corporis allati I in insects immediately after the final ecdysis prevented the normal increase in size of the corpora allata, but did not render them inactive since juvenile hormone was detected in the haemolymph after the operation. The half life of juvenile hormone in the haemolymph of allatectomized adult male Locusta was 1 to 2 hr.  相似文献   

17.
The effect of 20-hydroxyecdysone upon the activity of corpora allata (CA) from female Diploptera punctata has been investigated. This ecdysteroid inhibits juvenile hormone (JH) biosynthesis by the CA, whether they have been implanted into a male, or remained in situ within the female. In the female, this inhibition is reflected in reduced oöcyte growth and vitellin content. The allatostatic effect of 20-hydroxyecdysone becomes apparent in vivo within 24 hr. However, no inhibition was observed when the CA were maintained in vitro for 42 hr in medium containing up to 1·10?5 M 20-hydroxyecdysone. This suggests that the effect of the hormone upon the CA is indirect. These experiments raise the possibility that ecdysteroids play an allatostatic role during the normal gonotrophic cycle in Diploptera.  相似文献   

18.
The levels of ecdysteroids in control and leg-autotomized first-instar nymphs of Blattella germanica were determined by radioimmunoassay from hatching to the time of the first ecdysis. Uninjured nymphs showed a distinct release of ecdysteroids half-way through the stadium, and this resulted in the commencement of the moult cycle which formed the cuticle of the second instar. Cockroaches which had legs autotomized at 48 h after hatching (i.e. before the control ecydsteroid release) had their instar duration increased by that time period. Releases of ecdysteroids and events of the moulting cycle were also postponed by the 48 h period. The titre of ecdysteroids in injured animals was double that of controls. Nymphs were also autotomized at 96 h (i.e. after the normal release of ecdysteroids) but no changes in instar duration, ecdysteroid releases, or events of the moult cycle were recorded. The effects of injury, prothoracicotropic hormone activity and ecdysteroid release are discussed.  相似文献   

19.
20.
Summary The structure of the extensible (alloscutum) and inextensible (scutum) integument of the nymph, Amblyomma variegatum was examined during the whole bloodmeal and the nymphal-adult moulting cycle. Integumental events were tentatively correlated with the ecdysteroid levels measured by radioimmunoassay. We observed that all the integumental events were realised along an anteroposterior gradient. During the 5 days corresponding to the bloodmeal, although the hormone concentration was low, a new endocuticle was deposited on both the alloscutum and scutum. Furthermore, mitoses were initiated in the capitulum. On days 1–2 after the meal, ecdysteroid titres began to increase and reached a first peak corresponding to 4.1 ng 20-hydroxyecdysone equivalents/tick on the 4th day after the ticks dropped off their host. At this time the epidermis of the capitulum was detached and the outline of the adult capitulum was already visible. Mitotic activity in the alloscutum was initiated. On day 6 post-drop, the frontal apolysis was achieved and the ecdysteroid titres declined to basal values. A second peak much higher than the first one (maximum value of 33.7 ng/tick) and identified principally as 20-hydroxyecdysone by HPLC/RIA was noted on the 13th day post-drop. During the period of increase in the ecdysteroid levels (days 9–10 post-drop), the mitotic phase ended in the alloscutum and the apolysis began. Epicuticle was deposited after day 12 postdrop. Then, while the titre fell to low values (about 1.6 ng/tick, days 16–20 post-drop), the exocuticle was deposited and the nymphal cuticle was digested. All adult structures were functional 3 days before ecdysis. In young male as in female adults the mean value of the ecdysteroid levels corresponded to about 2.5 ng/tick. Finally, hydrolysis of tick whole extracts with esterase demonstrated a low increase of RIA-positive material, demonstrating the probable presence of natural ecdysteroid fatty-acid conjugates in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号