首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a novel mode of SOS induction, called gratuitous indirect induction, which is elicited when the maintenance of an intact λminiF introduced into a recipient was inhibited by a resident plasmid or by mutations in miniF that impaired partition or replication. Gratuitous induction required the presence of the lynA locus on miniF and was dependent on the host recA and lexA alleles. To account for gratuitous induction, we postulate that impairment of the normal co-regulation between partition and replication of miniF affects lynA functions whose disturbance leads to the production of an SOS signal.  相似文献   

2.
Summary MiniF, a 9.3 kb fragment of the dispensable F plasmid, carries genes necessary for its replication and partition as well as for the expression of an SOS signal. The arrest of replication of a thermo-sensitive miniFts at 42°C induced SOS functions such as prophage , sfiA expression, W-reactivation of UV-irradiated phage . Two miniF ts9 and ts17 mutations were located within the KpnI fragment (43.6–46.9) in the minimal oriS replicon. Blocking miniF replication by incBC + incompatibility genes situated in trans on a second plasmid also induced SOS functions. In contrast, if miniFts17 plasmid escaped the replication block at 42°C by being inserted into pR325, there was no SOS induction. SOS induction by the arrest of miniF replication required the miniF lynA + locus in cis, the host recA + and lexA + genes. We found that SOS induction was increased greatly near the stationary phase and that cell viability declined. During host cell exponential growth, miniFts9 and miniFts17 plasmids were lost rapidly, although SOS induction persisted for several cell generations. We postulate that lynA expresses a persistent product that may lead to the unwinding of chromosomal DNA.  相似文献   

3.
Summary The minimal replication origin of miniF plasmid was found to lie within a region of 217 bp in length. This region contains an AT cluster and the four 19 bp direct repeats responsible for incompatibility, termed incB. Its location coincides with that of ori2 of plasmid F, previously inferred to be the replication starting point by electron microscopic analysis (Eichenlaub et al. 1981).Abbreviations kb kilobase(s) - bp base pairs - Ap ampicillin - Tc tetracycline  相似文献   

4.
5.
Protein synthesis induced by infection with packaged lambda dv plasmid   总被引:2,自引:0,他引:2  
E Akaboshi  K Matsubara 《Plasmid》1981,6(3):315-324
Plasmid λdv or imm21dv DNA was joined to a λ arm having a cos site. This recombinant plasmid can be packaged in a λ head, and used to infect Escherichia coli K12 cells. The injected DNA molecules become plasmids in cells. By adding these particles to uv-irradiated uvrA cells, the packageable λdv or imm21dv plasmids can be induced to synthesize proteins coded by genes on the plasmid genome. The packageable plasmid system is thus suitable for studying on synthesis and regulation of plasmid-coded biopolymers. Analyses of the dv-coded proteins in gel electrophoreses revealed that among several genes carried on the dv plasmid genome, only those genes that are members of the pRoR-tof-cII-O-P operon can be expressed. Evidence has been presented to show that expression of this operon, which is directly correlated with replication of the genome, is only partially allowed in cells perpetuating the dv plasmid. These observations are discussed in connection with the autorepressor model (D. E. Berg, 1974, Virology62, 224–233; K. Matsubara, 1976, J. Mol. Biol.102, 427–439) that genetically accounts for the control mechanism of plasmid replication.  相似文献   

6.
Prior irradiation of non-lysogenic bacteria by ultraviolet light leads to an increase in the viability of infecting irradiated λ phage (ultraviolet reactivation). Similarly, u.v. irradiation of wild type or uvrD bacteria lysogenic for λcIind? increased the fraction of closed circular duplex phage DNA molecules formed after infection with u.v.-irradiated λ phage. The closed circular molecules isolated from the irradiated lysogens were shown to be free from u.v. damage by a spheroplast transfection assay. The increase of closed circular molecules is sufficient to explain the ultraviolet reactivation observed by the increase of viability of irradiated phage.In ultraviolet reactivation, damage must be erased on irradiated DNA molecules and the repair is independent of total replication of phage genomes, exchange of sister chromatids or recombination between phage genomes. Protein synthesis is necessary to increase the level of closed circular molecules of irradiated λ phage after irradiation of bacteria.  相似文献   

7.
The bacteriophage λ genes exo and bet, whose products (λ exonuclease and β protein, respectively; Red phenotype) mediate homologous recombination of λ phages, have been cloned under lacPOlacIq control on multi-copy plasmids. Induction of recA3 cells harboring these plasmids with isopropylthiogalactoside (IPTG) resulted in λ exonuclease levels (assayed in vitro) that were proportional to the time of induction (for at least 4 h); recombination of λ Red? phages in vivo was similarly inducible. Only one out of 25 betΔ plasmids (constructed by a variety of in vitro techniques) expressed λ exonuclease, a result consistent with the polarity of several known phage bet mutations. A general method for transferring phage exo and bet mutations to plasmids was devised and plasmids bearing polar (bet3) and nonpolar (bet113) mutations were constructed. Mutant derivatives of the plasmid showed the same complementation pattern as analogous phage red mutants. When λbet3 phages (Exo?Bet?) infected IPTG-induced recA3 bacteria containing exo+bet+ plasmids, recombination frequencies were no more than twice those typical for infection of plasmid-free recA3 cells with exo+bet+ phages, even in the case of IPTG induction sufficient to elevate the production of λ exonuclease about 100-fold. Even when plasmid induction was delayed till as late as 50 min after infection, recombination was significant. Preliminary experiments suggest that these plasmids encode a polypeptide with Gam activity that corresponds to the 98-amino acid “shorter” open reading frame assigned to gam by Sanger et al.  相似文献   

8.
We developed a novel assay system for illegitimate recombination, in which the frequency of the formation of λ Spi phages formed during prophage induction was measured with an E. coli P2 lysogen as the indicator bacteria. Since almost all of the λ Spi phages thus detected contain attR, they have essentially the same structures as λbio transducing phages, indicating that this assay system enables us to detect specialized transducing phages that produce heterogenote transductants, thus ignoring the occurrences of docL and docR particles which carry only one cohesive end. The following results on the formation of specialized transducing phages have been obtained by this assay system to date. (1) Irradiation with UV light greatly enhanced the formation of λ Spi phages. (2) Treatments with other DNA-damaging agents also enhanced the formation of λ Spi phages. (3) Illegitimate recombination during prophage induction does not require the RecA function, indicating that enhancement of λ Spi phage formation is not controlled by the SOS regulatory system. (4) Preliminary results suggested that DNA gyrase is involved in the formation of λ Spi phage during prophage induction. Since the above results were consistent with most of the previous observations on the illegitimate recombination in other systems, the Spi assay system can provide important clues to the mechanism of illegitimate recombination.  相似文献   

9.
Summary Various DNA subfragments were derived from miniF DNA by complete or partial PstI cleavage, and cloned in the plasmid vectors pBR322 or dv1. The recombinant plasmids obtained were introduced into an Escherichia coli minicell-producing strain, and the plasmid-coded proteins were radiolabeled and analyzed by gel electrophoresis. Six miniF-encoded proteins, larger than 11 000 daltons, were detected and their coding regions were mapped on the F plasmid genome. Three of them were assigned by taking into account the known nucleotide sequences (Murotsu et al. 1981; K. Yoshioka, personal communication). The coding directions of some proteins were determined by inserting the lac promotor into one of the recombinant plasmids and analyzing the increase in production of the proteins. The coding direction of the five proteins analyzed so far was uniform. Comparison of these results with a functional map of miniF suggested possible roles of the proteins.  相似文献   

10.
Induction of bacteriophage λ in the presence of a P2 prophage results in inactivation of cellular transfer RNA, inhibition of amino acid and uridine incorporation in the host, as well as inhibition of phage replication. A red gam double mutation allows λ to escape from interference, and a mutation in gene O or P abolishes the effects on the host.It is shown here that phage and plasmid DNA extracted from cells undergoing P2-λ interference are still active in a transfection assay. Mutations in bacterial gene dna B or in phage site ori suppress the inhibition of amino acid incorporation, whereas genes dnaE and dna G have no such effect. Derepression of bacterial exonuclease VIII totally suppresses the interference, and mutations in genes recA and lexA, which control the SOS functions, suppress it partially if the λ phage is red+. Our results suggest that P2-λ interference is due to the action of old at an early step of the initiation of λ replication.  相似文献   

11.
Chromosome-less minicells of Escherichia coli harboring the plasmid λdv, mini [λdv] synthesize several proteins specified by this fragment of the “early” λ DNA region, as shown by 14C-labeling, gel electrophoresis and autoradiography. Mini[λdv] infected with phage λ reveal a much more composite protein profile. This profile originating from the system composed entirely of λ genes is very similar to that produced by λ-infected mini[ColE1] indicating that the latter may be used for the identification of λ gene products.  相似文献   

12.
13.
The light-induced action of 8-methoxypsoralen (8-MOP) on λ phage and plasmids yields monoadducts and interstrand crosslinks. The survival and clear plaque mutation frequency in the phage photosensitized with 8-MOP and irradiated with UV at wavelength >320 nm are increased when the wild-type host (Escherichia coli uvr +) is subjected to UV irradiation (wavelength = 254 nm) prior to phage inoculation. These phenomena are known as “W reactivation” and “W mutagenesis.” It is shown that 8-MOP monoadducts in λ DNA induce clear mutations in the phage inoculated to UV-irradiated excision repair mutants of E. coli only when the error-prone repair is performed by MucA 2 B, but not PolV (UmuD 2 C) polymerase. The efficiency of the SOS repair (W reactivation) of 8-MOP monoadducts in plasmid and λ phage DNA also only increases with the presence of pKM101 plasmid muc + in E. coli uvr ?.  相似文献   

14.
The right operator in bacteriophage lambda vs326 has one-twentieth the in vitro binding affinity for repressor as λv+; for comparison λv3 has one-quarter the affinity of λv+. In vivo, both mutants constitutively express genes in the right operon. Both λv3 and λvs326 express gene O constitutively because they complement λimm434Oam? in a λ lysogen, vs, more efficiently than v3. The v3 allele in cis (but not in trans) to vs326 gives significantly greater phage yields in a λ lysogen than λvs326 alone, cro gene function, measured by arrest of exonuclease synthesis, suggested the following series of increasing degree of conatitutivity: v3, vs326, v3 vs326. λv2 vs326 forms plaques on lysogens that carry λcI857, but λv2 v3 does not. These results indicate that vs326, like v3, is an operator constitutive mutation but stronger in its effects. These mutants exemplify a uniform correlation between relative weakness of repressor binding and degree of constitutive gene expression.  相似文献   

15.
In a previous study, various intermediates in λ DNA packaging were visualized after lysis of λ-infected cells with osmotic shock and sedimentation through a sucrose formalin cushion onto electron microscope grids. Along this line, a systematic screening for intermediates accumulated in all head mutants available was performed. λA?-infected cells accumulate only empty spherical protein shells (petit λ) bound at an intermediate point along the DNA thread. In situ digestion experiments with restriction endonuclease EcoRI show that the petit λ-DNA complexes are formed at a fixed point on the DNA concatemer. In λNu1?-infected cells, however, most petit λ was not bound to DNA. In Fec? cells, which are defective in formation of concatemers but normal in head protein synthesis, most petit λ did not sediment onto the carbon film of the grid. In D? mutant, petit λ, partially full heads and empty heads with released DNA were observed. λFI?-infected cells also accumulate petit λ and partially full heads. The present studies suggest that protein pNu1 is required for complex formation between head precursors and DNA concatemers, pA for the initiation of DNA packaging, pD and pFI for the promotion of DNA packaging, and pD for stabilization of head structures. The results obtained with other head mutants involved in formation of mature proheads and head completion confirm earlier results obtained by different techniques.  相似文献   

16.
A new model system for the study of the SOS response has been developed. In this system the response is induced by blocking the replication fork at a Ter site located in pUC-derived plasmids. Blockage of the fork is dependent on the expression of the Ter binding protein, Tus, encoded on another plasmid, in which the tus gene is under the control of the ara promoter. SOS induction can, therefore, be controlled by arabinose. The extent of the SOS response was monitored by measuring the activity of β-galactosidase, expressed from a lacZ gene fused to the 5′ region of the sfiA gene, a typical SOS-responsive gene. Expression of the fusion gene is completely dependent on recA + and lexA + genes. Using this system, we found that the distance between the ori and Ter sites is directly correlated with the strength of SOS induction. The properties of this system are discussed.  相似文献   

17.
The life cycle of phage λ has been studied extensively. Of particular interest has been the process leading to the decision of the phage to switch from lysogenic to lytic cycle. The principal participant in this process is the λcI repressor, which is cleaved under conditions of DNA damage. Cleaved λcI no longer acts as a repressor, allowing phage λ to switch from its lysogenic to lytic cycle. The well‐known mechanism responsible for λcI cleavage is the SOS response. We have recently reported that the Escherichia coli toxin‐antitoxin mazEF pathway inhibits the SOS response; in fact, the SOS response is permitted only in E. coli strains deficient in the expression of the mazEF pathway. Moreover, in strains lysogenic for prophage λ, the SOS response is enabled by the presence of λrexB. λRexB had previously been found to inhibit the degradation of the antitoxin MazE, thereby preventing the toxic action of MazF. Thus, phage λ rexB gene not only safeguards the prophage state by preventing death of its E. coli host but is also indirectly involved in the lysogenic–lytic switch.  相似文献   

18.
19.
The process of SOS mutagenesis in Escherichia coli requires (i) the replisome enzymes, (ii) RecA protein, and (iii) the formation of the UmuD'C protein complex which appears to help the replisome to resume DNA synthesis across a lesion. We found that the UmuD'C complex is an antagonist of RecA-mediated recombination. Homologous recombination in an Hfr x F- cross decreased as a function of the UmuD'C cell concentration; this effect was challenged by increasing RecA concentration. Recombination of a u.v.-damaged F-lac with the lac gene of an F- recipient was reduced by increasing the UmuD'C concentration while lac mutagenesis increased, showing an inverse relationship between recombination and SOS mutagenesis. We explain our data with the following model. The kinetics of appearance of the UmuD'C complex after DNA damage is slow, reaching a maximum after an hour. Within that period, excision and recombinational repair have had time to occur. When the UmuD'C concentration relative to the number of residual RecA filaments, not resolved by recombinational repair, becomes high enough, UmuD'C proteins provide a processive factor for the replisome to help replication bypass and repel the standing RecA filament. Thus, at a high enough concentration, the UmuD'C complex will switch repair from recombination to SOS mutagenesis.  相似文献   

20.
The genetic elements which control autonomous DNA replication differ in functional specificity among coliphage λ, the coliphages φ80 and 82, and the Salmonella phage P22. Hybrid phages derived by genetic recombination between λ and each of these related phages have been used to define and to localize specificity determinants for DNA replication.In λ-P22 hybrid phages (Hilliker & Botstein, 1976) the replication control elements segregate as an intact unit. By contrast, some viable λ-φ80 and λ.82 hybrid phages arise by recombination within the replication control region, in a small interval inside structural gene O. From the properties of such hybrid phages, we infer that the O gene product of λ and the functionally equivalent proteins of φ80 and 82 each interact with a specific nucleotide sequence in the cognate ori site, the DNA target for control of the origin of replication. With respect to this interaction, both the O products and the receptor sequences within ori show stringent type specificity. The donor and receptor specificity determinants for the ori-O interaction lie within an interval of less than 400 base-pairs.The O gene product also interacts with the product of replication gene P (Tomizawa, 1971). The O-P interaction displays limited type specificity; the P-like protein of φ80 can function together with the O protein of λ, but the P protein of λ cannot function with the O-like protein of φ80. The specificity determinants for the O-P interaction can be separated from those for the ori-O interaction.We propose that a chain of interactions between ori, O product, P product, and replication functions of the bacterial host, Escherichia coli, controls specific template selection and the assembly of the essential replication apparatus in the initiation of λ DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号