首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mononuclear cells in peritoneal washings from normal rats can be induced to produce large amounts of slow reacting substance of anaphylaxis by incubation with 10 mM cysteine in the presence of the calcium ionophore A-23187. This production of slow reacting substance could be inhibited by the addition of non-steroidal anti-inflammatory drugs, e.g., indomethacin, ibuprofen and flurbiprofen. Furthermore, mediator production was inhibited by eicosatetraynoic acid, the substrate analog of arachidonic acid, and by 9,11-azoprosta-5,13-dienoic acid (AzO analog 1), a structural analog of the prostaglandin endoperoxide, PGH2, which is known to inhibit thromboxane synthesis. Relatively high concentrations of hydrocortisone acetate inhibited mediator production; this inhibition could be partly reversed by the addition of arachidonic acid or to a lesser extent by eicosatrienoic acid. Preliminary results suggest that a small fraction of the 3H-labeled arachidonic acid which was taken up by these cells in vitro was associated with slow reacting substance. We postulate that slow reacting substance of anaphylaxis may be derived from a prostaglandin endoperoxide which is formed during the oxidation of arachidonic acid by the prostaglandin fatty acid cyclooxygenase.  相似文献   

2.
The anti-inflammatory effect of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with inhibition of cyclooxygenase (COX), the rate-limiting enzyme responsible for the synthesis of prostaglandins. Since oxygen free radicals can act as second cellular messengers, especially to modulate the metabolism of arachidonic acid and the prostaglandin tract, it seems plausible that antioxidants might affect the production of prostaglandin by activated cells. This research is focused on the effect of the antioxidant N-acetylcysteine (NAC) on the inhibition of prostaglandin E(2) formation in activated monocytes by specific and non-specific COX inhibitors. We found that lipopolysaccharide-induced prostaglandin E(2) formation was significantly reduced by rofecoxib and by diclofenac, two NSAIDs. Addition of NAC to each of these drugs enhanced the effect of the NSAIDs. These results suggest that one might expect either a potentiation of the anti-inflammatory effect of COX inhibitors by their simultaneous administration with NAC, or obtaining the same anti-inflammatory at lower drug levels.  相似文献   

3.
The mononuclear cells in peritoneal washings from normal rats can be induced to produce large amounts of slow reacting substance of anaphylaxis by incubation with 10 mM cysteine in the presence of the calcium ionophore A-23187. This production of slow reacting substance could be inhibited by the addition of non-steroidal anti-inflammatory drugs, e.g., indomethacin, ibuprofen and flurbiprofen, Furthermore, mediator production was inhibited by eicosatetraynoic acid, the substrate analog of arachidonic acid, and by 9,11-azoprosta-5, 13-dienoic acid (AZO analog 1), a structural analog of the prostaglandin endoperoxide, PGH2, which known to inhibit thromboxane synthesis. Relatively high concentrations of hydrocortisone acetate inhibited mediator production; this inhibition could be partly reversed by the addition of arachidonic acid or to a lesser extent by eicosatrienoic acid. Preliminary results suggest that a small fraction of the 3H-labled arachidonic acid which was taken up by these cells in vitro was associated with slow reacting substance. We postulate that slow reacting substance of anaphylaxis may be derived from a prostaglandin endoperoxide which is formed during the oxidation of arachidonic acid by the prostaglandin fatty acid cyclooxygenase.  相似文献   

4.
Arachidonic acid is a potential paracrine agent released by the uterine endometrial epithelium to induce PTGS2 [PG (prostaglandin)-endoperoxide synthase 2] in the stroma. In the present study, bovine endometrial stromal cells were used to determine whether PTGS2 is induced by arachidonic acid in stromal cells, and to investigate the potential role of PPARs (peroxisome-proliferator-activated receptors) in this effect. Arachidonic acid increased PTGS2 levels up to 7.5-fold within 6 h. The cells expressed PPARalpha and PPARdelta (also known as PPARbeta) (but not PPARgamma). PTGS2 protein level was increased by PPAR agonists, including polyunsaturated fatty acids, synthetic PPAR ligands, PGA1 and NSAIDs (non-steroidal anti-inflammatory drugs) with a time course resembling that of arachidonic acid. Use of agonists and antagonists indicated PPARalpha (but not PPARdelta or PPARgamma) was responsible for PTGS2 induction. PTGS2 induction by arachidonic acid did not require PG synthesis. PTGS2 levels were increased by the PKC (protein kinase C) activators 4beta-PMA and PGF(2alpha), and the effects of arachidonic acid, NSAIDs, synthetic PPAR ligands and 4beta-PMA were blocked by PKC inhibitors. This is consistent with PPAR phosphorylation by PKC. Induction of PTGS2 protein by 4beta-PMA in the absence of a PPAR ligand was decreased by the NF-kappaB (nuclear factor kappaB) inhibitors MG132 and parthenolide, suggesting that PKC acted through NF-kappaB in addition to PPAR phosphorylation. Use of NF-kappaB inhibitors allowed the action of arachidonic acid as a PPAR agonist to be dissociated from an effect through PKC. The results are consistent with the hypothesis that arachidonic acid acts via PPARalpha to increase PTGS2 levels in bovine endometrial stromal cells.  相似文献   

5.
Many actions of cyclooxygenase-2 in cellular dynamics and in cancer   总被引:84,自引:0,他引:84  
Cyclooxygenase-2 (COX-2) is the inducible isoform of cyclooxygenase, the enzyme that catalyzes the rate-limiting step in prostaglandin synthesis from arachidonic acid. Various prostaglandins are produced in a cell type-specific manner, and they elicit cellular functions via signaling through G-protein coupled membrane receptors, and in some cases, through the nuclear receptor PPAR. COX-2 utilization of arachidonic acid also perturbs the level of intracellular free arachidonic acid and subsequently affects cellular functions. In a number of cell and animal models, induction of COX-2 has been shown to promote cell growth, inhibit apoptosis and enhance cell motility and adhesion. The mechanisms behind these multiple actions of COX-2 are largely unknown. Compelling evidence from genetic and clinical studies indicates that COX-2 upregulation is a key step in carcinogenesis. Overexpression of COX-2 is sufficient to cause tumorigenesis in animal models and inhibition of the COX-2 pathway results in reduction in tumor incidence and progression. Therefore, the potential for application of non-steroidal anti-inflammatory drugs as well as the recently developed COX-2 specific inhibitors in cancer clinical practice has drawn tremendous attention in the past few years. Inhibition of COX-2 promises to be an effective approach in the prevention and treatment of cancer, especially colorectal cancer.  相似文献   

6.
Prostaglandin H synthases (PGHSs) have been identified in the majority of vertebrate and invertebrate animals, and most recently in the red alga Gracilaria vermiculophylla. Here we report on the cloning, expression and characterization of the algal PGHS, which shares only about 20% of the amino acid sequence identity with its animal counterparts, yet catalyzes the conversion of arachidonic acid into prostaglandin-endoperoxides, PGG2 and PGH2. The algal PGHS lacks structural elements identified in all known animal PGHSs, such as epidermal growth factor-like domain and helix B in the membrane binding domain. The key residues of animal PGHS, like catalytic Tyr-385 and heme liganding His-388 are conserved in the algal enzyme. However, the amino acid residues shown to be important for substrate binding and coordination, and the target residues for nonsteroidal anti-inflammatory drugs (Arg-120, Tyr-355, and Ser-530) are not found at the appropriate positions in the algal sequences. Differently from animal PGHSs the G. vermiculophylla PGHS easily expresses in Escherichia coli as a fully functional enzyme. The recombinant protein was identified as an oligomeric (evidently tetrameric) ferric heme protein. The preferred substrate for the algal PGHS is arachidonic acid with cyclooxygenase reaction rate remarkably higher than values reported for mammalian PGHS isoforms. Similarly to animal PGHS-2, the algal enzyme is capable of metabolizing ester and amide derivatives of arachidonic acid to corresponding prostaglandin products. Algal PGHS is not inhibited by non-steroidal anti-inflammatory drugs. A single copy of intron-free gene encoding for PGHS was identified in the red algae G. vermiculophylla and Coccotylus truncatus genomes.  相似文献   

7.
We have studied the effects on bone of three structurally dissimilar non-steroidal anti-inflammatory drugs which inhibit prostaglandin cyclo-oxygenase activity (PGH synthase); indomethacin, flurbiprofen, and piroxicam. We used cultures of half calvaria from neonatal or fetal rats to measure effects on PGE2 production, measured by radioimmunoassay. In four day neonatal rat calvaria, indomethacin inhibited PGE2 release into the medium by 80% at 10(-8) M, while flurbiprofen and piroxicam produced similar inhibition at 10(-6) M. However, at 10(-10) M, treatment with all three compounds resulted in an increase in medium PGE2 concentration of 60 to 120%. To assess the mechanism of this effect, bones were labeled with [3H]-arachidonic acid, washed and cultured in the presence or absence of piroxicam. At 10(-6) M, piroxicam inhibited production of cyclo-oxygenase products and arachidonic acid release. However, at 10(-10) M, there was a substantial increase in labeled products, particularly PGE2, despite a further decrease in arachidonic acid release. In 21 day fetal rat cultures, flurbiprofen was found to increase PGE2 release both in control cultures and cultures which had been incubated with cortisol (10(-8) M) to reduce endogenous arachidonic acid release and supplied with exogenous arachidonic acid (10(-5) M) to provide a substrate. These results indicate that three potent inhibitors of PGH synthase can, paradoxically, increase prostaglandin production at low concentrations. The effect does not appear to be due to increased arachidonic acid release, and could be due to increased PGH synthase activity.  相似文献   

8.
The dynamic replies of the multienzyme system of blood prostanoid synthesis to the introduction of an irreversible inhibitor of prostaglandin H synthetase (PGH synthetase) have been analysed by using kinetic modelling. The alterations of arachidonic acid and PGH synthetase concentrations in platelets and endothelium and the concentrations of thromboxane and prostacyclin have been demonstrated. Particularities of kinetic behaviour of the system probably providing the therapeutic effect of non-steroidal anti-inflammatory drugs have been shown. Namely, the kinetic wave of free arachidonic acid and prostacyclin concentration with respect to thromboxane concentration appears after introduction of the drugs.  相似文献   

9.
Studies from our laboratory have suggested a role for ferrous iron in the metabolism of arachidonic acid and demonstrated that inhibitors of prostaglandin synthesis exert their effect by complexing with the heme group of cyclooxygenase. Docosahexaenoic acid (DHA) is a potent competitive inhibitor of arachidonic acid metabolism by sheep vesicular gland prostaglandin synthetase. In this study we have evaluated the effect of exogenously added DHA on platelet function and arachidonic acid metabolism. DHA at 150 microM concentration inhibited aggregation of platelets to 450 microM arachidonic acid. At this concentration DHA also inhibited the second wave of the platelet response to the action of agonists such as epinephrine, adenosine diphosphate and thrombin. Inhibition induced by this fatty acid could be overcome by the agonists at higher concentrations. DHA inhibited the conversion of labeled arachidonic acid to thromboxane by intact, washed platelet suspensions. However, platelets in plasma incubated first with DHA then washed and stirred with labeled arachidonate generated as much thromboxane as control platelets. These results suggest that the polyenoic acids, if released in sufficient quantities in the vicinity of cyclooxygenase, could effectively compete for the heme site and inhibit the conversion of arachidonic acid.  相似文献   

10.
A variety of drugs inhibit the conversion of arachidonic acid to prostaglandin G2 by the cyclooxygenase (COX) activity of prostaglandin endoperoxide synthases. Several modes of inhibitor binding in the COX active site have been described including ion pairing of carboxylic acid containing inhibitors with Arg-120 of COX-1 and COX-2 and insertion of arylsulfonamides and sulfones into the COX-2 side pocket. Recent crystallographic evidence suggests that Tyr-385 and Ser-530 chelate polar or negatively charged groups in arachidonic acid and aspirin. We tested the generality of this binding mode by analyzing the action of a series of COX inhibitors against site-directed mutants of COX-2 bearing changes in Arg-120, Tyr-355, Tyr-348, and Ser-530. Interestingly, diclofenac inhibition was unaffected by the mutation of Arg-120 to alanine but was dramatically attenuated by the S530A mutation. Determination of the crystal structure of a complex of diclofenac with murine COX-2 demonstrates that diclofenac binds to COX-2 in an inverted conformation with its carboxylate group hydrogen-bonded to Tyr-385 and Ser-530. This finding represents the first experimental demonstration that the carboxylate group of an acidic non-steroidal anti-inflammatory drug can bind to a COX enzyme in an orientation that precludes the formation of a salt bridge with Arg-120. Mutagenesis experiments suggest Ser-530 is also important in time-dependent inhibition by nimesulide and piroxicam.  相似文献   

11.
The effect of luminal application of arachidonic acid on the alkaline secretion, prostaglandin generation, and mucus glycoprotein output and composition was studied in proximal and distal duodenum of conscious dogs. Surgically prepared duodenal loops were instilled in vivo for up to 2 h with saline (control) followed by various concentrations (12.5–100 μg/ml) of arachidonic acid. The experiments were conducted with and without intravenous pretreatment with indomethacin. The recovered instillates were assayed for the content of prostaglandin and HCO3, and used for the isolation of mucus glycoprotein. Exposure of duodenal mucosa to arachidonic acid led to concentration-dependent increase in the output of HCO3 and prostaglandin generation. In both cases this response was greater in the proximal duodenum. Pretreatment with indomethacin caused reduction in the basal HCO3 and prostaglandin output, and prevented the increments evoked by arachidonic acid. The proximal and distal duodenum displayed similar basal output and composition of mucus glycoprotein. Comparable increases in these glycoproteins were also obtained with arachidonic acid, the effect of which was abolished by indomethacin. Compared to basal conditions, mucus glycoproteins elaborated in response to arachidonic acid exhibited higher contents of associated lipids and covalently bound fatty acids, and contained less protein. The associated lipids of mucus glycoproteins elaborated in the presence of arachidonic acid showed enrichment in phospholipids and decrease in neutral lipids. The carbohydrate components in these glycoproteins also exhibited higher proportions of sialic acid and sulfate. The changes brought about by arachidonic acid were prevented by indomethacin pretreatment, and in both cases the glycoprotein composition returned to that obtained under basal conditions. The enrichment of mucus glycoprotein in lipids, sialic acid and sulfate in response to endogenous prostaglandin may be of significance to the function of this glycoprotein in the hostile environment of the duodenum.  相似文献   

12.
The microsomes of rabbit kidney medulla converted arachidonic acid into prostaglandin E2 in the presence of hemoglobin, tryptophan and glutathione as activators. When themicrosomal suspension was treated with 1% Tween 20, a solubilized enzyme was obtained which catalyzed the conversion of arachidonic acid to prostaglandins G2 and H2. The solubilized enzyme was adsorbed to and then eluted from an omega-aminooctyl Sepharose 4B column, resulting in about 10-fold purification over the microsomes. The partially purified enzyme produced predominantly prostaglandin G2 in the presence of hemoglobin, while prostaglandin H2 was produced in the presence of both hemoglobin and tryptophan. The stimulation of prostaglandin endoperoxide formation was also observed with other heme and aromatic compounds. Prostaglandin H2 synthesis was inhibited by a variety of compounds including non-steroidal anti-inflammatory drugs, thiol compounds and prostaglandin analogues with a thiol group(s).  相似文献   

13.
A nutrient associated with animal-derived phospholipids has previously been found essential for newly-emerged adults of the mosquito Culex pipiens to fly and survive more than a few days. Pure arachidonic acid was completely effective in supporting the emergence of viable flying adults; in combination with synthetic dipalmitoyl lecithin, which slightly improves larval growth rate without inducing adult flight, it wholly adequately replaces animal phospholipids. Linoleic and linolenic acids, which have satisfied the needs of all insects hitherto shown to require an essential fatty acid, were ineffective for C. pipiens, with or without synthetic lecithin. An optimal effect on adult flight was obtained with 0.05 mg of arachidonic acid per 100 ml of dietary medium, a concentration much lower than the linoleic/linolenic concentrations needed by other insects with an essential fatty acid requirement. The relationship of this unique mosquito fatty acid requirement to the essential fatty acid needs of both vertebrates and insects in general is discussed.  相似文献   

14.
Carbonic anhydrases (CAs, EC 4.2.1.1) are enzymes involved in a multitude of diseases, and their inhibitors are in clinical use as drugs for the management of glaucoma, epilepsy, obesity, and tumours. In the last decade, multitargeting approaches have been proposed by hybridisation of CA inhibitors (CAIs) of sulphonamide, coumarin, and sulphocoumarin types with NO donors, CO donors, prostaglandin analogs, β-adrenergic blockers, non-steroidal anti-inflammatory drugs, and a variety of anticancer agents (cytotoxic drugs, kinase/telomerase inhibitors, P-gp and thioredoxin inhibitors). Many of the obtained hybrids showed enhanced efficacy compared to the parent drugs, making multitargeting an effective and innovative approach for various pharmacological applications.  相似文献   

15.
Hypoxic injury provokes inflammation of many tissues including the ocular surface. In rabbit corneal epithelial cells, both peroxisome proliferator-activated receptor (PPAR)-inducible cytochrome P450 4B1 and cyclooxygenase-2 (COX-2) mRNAs were increased by hypoxia. PPAR alpha and beta but not gamma mRNAs were detected in these cells. The PPAR activator, WY-14,643 increased COX-2 expression. Similarly, non-steroidal anti-inflammatory drugs with the ability to activate PPARs induced COX-2 independently of prostaglandin synthesis inhibition. COX-2 protein overexpression by hypoxia and PPAR activation was not associated with a parallel increase in prostaglandin E(2) accumulation. However, the enzyme regained full catalytic activity when: 1) hypoxic cells were re-exposed to normoxic conditions in the presence of heme and arachidonic acid, and 2) WY-14,643-treated cells were depleted of intracellular GSH. Consistent with previous observations showing that the corneal production of cytochrome P450-derived inflammatory eicosanoids is elevated by hypoxia and inflammation, the current data suggest that hypoxic injury is a model of inflammation in which molecules other than COX-derived arachidonic acid metabolites play a major proinflammatory role. This study also suggests that increased cellular GSH may be the mechanism responsible for the characteristic dissociation of PPAR-induced COX-2 expression and activity. Moreover, we provide new insights into the commonly observed lack of efficacy of classical non-steroidal anti-inflammatory drugs in the treatment of hypoxia-related ocular surface inflammation.  相似文献   

16.
The effect of applied arachidonic acid, prostaglandin (PGE1) and various sterols and combinations of arachidonic acid + sterols, on flowering of Pharbitis nil were ascertained by using a tissue culture technique. It was found that arachidonic acid, PGE1 stigmasterol, testosterone, cholesterol, stigmasterol + arachidonic acid, -sitosterol + arachidonic acid and cholesterol + arachidonic acid all caused earlier flowering. Four inhibitors of prostaglandin biosynthesis (gentisic acid, acetylsalicylic acid, salicylic acid and oleic acid), inhibited flowering completely. The results confirm that the compounds tested could possibly play a role in the flowering of P. nil.  相似文献   

17.
Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes.  相似文献   

18.
19.
Application of 12-O-tetradecanoylphorbol-13-acetate to mouse skin led to a dramatic induction of epidermal ornithine decarboxylase (EC 4.1.1.17; L-ornithine carboxy-lyase) activity. The degree of induction was remarkably depressed by prior treatment of skin with indomethacin, acetylsalicylic acid or flufenamic acid, inhibitors of prostaglandin synthesis. In contrast, dexamethasone, a steroidal anti-inflammatory drug, was ineffective. The inhibition of tumor promoter-induced ornithine decarboxylase activity by the non-steroidal anti-inflammatory drugs was completely counteracted by treatment with prostaglandin E1 and E2 but not with prostaglandin F or F.  相似文献   

20.
Microsomal prostaglandin E(2) synthase-1 (mPGES-1) has been recognized as novel, promising drug target for anti-inflammatory and anticancer drugs. mPGES-1 catalyzes the synthesis of the inducible prostaglandin E(2) in response to pro-inflammatory stimuli, rendering this enzyme extremely interesting in drug discovery process owing to the drastic reduction of the severe side effects typical for traditional non-steroidal anti-inflammatory drugs. In the course of our investigations focused on this topic, we identified two interesting molecules bearing the γ-hydroxybutenolide scaffold which potently inhibit the activity of mPGES-1. Notably, the lead compound 2c that inhibited mPGES-1 with IC(50)=0.9μM, did not affect other related enzymes within the arachidonic acid cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号