首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fructosyltransferases (FTs) synthesize fructans, fructose polymers accumulating in economically important cool-season grasses and cereals. FTs might be crucial for plant survival under stress conditions in species in which fructans represent the major form of reserve carbohydrate, such as perennial ryegrass (Lolium perenne). Two FT types can be distinguished: those using sucrose (S-type enzymes: sucrose:sucrose 1-fructosyltransferase [1-SST], sucrose:fructan 6-fructosyltransferase) and those using fructans (F-type enzymes: fructan:fructan 1-fructosyltransferase [1-FFT], fructan:fructan 6G-fructosyltransferase [6G-FFT]) as preferential donor substrate. Here, we report, to our knowledge for the first time, the transformation of an F-type enzyme (6G-FFT/1-FFT) into an S-type enzyme (1-SST) using perennial ryegrass 6G-FFT/1-FFT (Lp6G-FFT/1-FFT) and 1-SST (Lp1-SST) as model enzymes. This transformation was accomplished by mutating three amino acids (N340D, W343R, and S415N) in the vicinity of the active site of Lp6G-FFT/1-FFT. In addition, effects of each amino acid mutation alone or in combination have been studied. Our results strongly suggest that the amino acid at position 343 (tryptophan or arginine) can greatly determine the donor substrate characteristics by influencing the position of the amino acid at position 340. Moreover, the presence of arginine-343 negatively affects the formation of neofructan-type linkages. The results are compared with recent findings on donor substrate selectivity within the group of plant cell wall invertases and fructan exohydrolases. Taken together, these insights contribute to our knowledge of structure/function relationships within plant family 32 glycosyl hydrolases and open the way to the production of tailor-made fructans on a larger scale.  相似文献   

2.
3.
Fructosyltransferases (FTs) are key enzymes in plants and bacteria to synthesize fructans. To gain insight on the specificity of the hexose subsites in the active site of FTs, ethylene glycol fructoside (EGF) and glycerol fructoside (GF), containing fructose in the furanose configuration, were synthesized in vitro and used as substrates to study the effect on the activity of bacterial levansucrase (BsLS), chicory root sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT). The results demonstrated that EGF and GF, at physiologically relevant concentrations, were efficient acceptor substrates for BsLS and 1-FFT, but not for 1-SST. EGF and GF cannot be used as donor substrates for BsLS, 1-SST and 1-FFT. A model is proposed to explain the subsite specificity differences between the three FTs involved in this study.  相似文献   

4.
Kawakami A  Yoshida M 《Planta》2005,223(1):90-104
Fructans play important roles not only as a carbon source for survival under persistent snow cover but also as agents that protect against various stresses in overwintering plants. Complex fructans having both ß-(2,1)- and ß-(2,6)-linked fructosyl units accumulate in wheat (Triticum aestivum L.) during cold hardening. We detected fructan: fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100) activity for catalyzing the formation and extension of ß-(2,1)-linked fructans in hardened wheat tissues, cloned cDNAs (wft3 and wft4) of 1-FFT, and analyzed the enzymatic properties of a wft3 recombinant protein (Wft3m) produced by yeast. Wft3m transferred ß-(2,1)-linked fructosyl units to phlein, an extension of sucrose through ß-(2,6)-linked fructosyl units, as well as to inulin, an extension of sucrose through ß-(2,1)-linked fructosyl units, but could not efficiently synthesize long inulin oligomers. Incubation of a mixture of Wft3m and another recombinant protein of wheat, sucrose:fructan 6-fructosyltransferase (6-SFT), with sucrose and 1-kestotriose produced fructans similar to those that accumulated in hardened wheat tissues. The results demonstrate that 1-FFT produces branches of ß-(2,1)-linked fructosyl units to phlein and graminan oligomers synthesized by 6-SFT and contributes to accumulation of fructans containing ß-(2,1)- and ß-(2,6)-linked fructosyl units. In combination with sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and 6-SFT, 1-FFT is necessary for fructan synthesis in hardened wheat.  相似文献   

5.
This study was to investigate the effect of exogenous nitric oxide (NO) on fructan accumulation and fructan biosynthesic enzymes (FBEs) expression in seedlings leaves of two wheat (Triticum aestivum L.) cultivars, winter wheat (Zhoumai18, ZM) and spring wheat (Yanzhan4110, YZ), under 4 °C. The seedlings of two wheat cultivars were subjected to different concentrations of sodium nitroprussiate (SNP) for 0, 24, 48, and 96 h. Relative water content (RWC) was increased by exogenous NO in YZ, but decreased in ZM. Except for glucose, fructose and fructans of degree of polymerization (DP) 3 in YZ, other soluble carbohydrates contents in the two wheat cultivars all increased to different degrees. The activities of FS (including sucrose: sucrose 1-fructosyltransferase (1-SST, EC: 2.4.1.99) and sucrose: fructan 6-fructosyltransferase (6-SFT, EC: 2.4.1.10)) were significantly higher than fructan: fructan 1-fructosyltransferase (1-FFT, EC: 2.4.1.100) in the seedlings of two wheat cultivars. The same phenomenon occurred to FBEs expression. In addition, sucrose content decreased while fructans content increased under low temperature, which was in accordance with the improved 1-FFT activity in ZM. Moreover, fructans content increased to a high level under high concentration of NO in ZM while kept at a constant low level in YZ. The expression levels of FBEs were universally higher in ZM than in YZ, which identified with the high frost resistance of the winter cultivar. It is concluded that exogenous NO treatment on wheat may be a good option to reduce chilling injury by regulating fructan accumulation in leaves. This is the first report owing that exogenous NO alleviated the negative effects of chilling stress by accumulating fructans in wheat.  相似文献   

6.
At low concentrations of purified chicory root 1-SST, only 1-kestosewas produced from a physiologically relevant sucrose concentration.As the 1-SST concentration increased, some higher oligofructanswere also detected, showing that 1-SST has some 1-FFT activityafter sucrose exhaustion in the reaction mixtures. The consequencesfor the interpretation of fructan synthesizing activities invitro are discussed. With a mixture of both purified 1-SST and1-FFT it was found that the higher the enzyme concentration,the higher the maximal DP of the fructans that could be synthesized.The higher the enzyme concentration, the higher the relativeabundance of the larger DP fructans and fructose in the reactionmixtures. Taken together with previous results, there is confidencethat the final fructan pattern obtained in vitro is a functionof the (1-SST+1-FFT)/sucrose ratio and suggest that the latterratio in situ could affect the highly variable tissue- or species-specificpattern of fructans produced in vivo. Key words: 1-FFT, 1-SST, chicory, enzyme concentration, sucrose  相似文献   

7.
* Fructan:fructan 6G-fructosyltransferase (6G-FFT) catalyses a transfructosylation from fructooligosaccharides to C6 of the glucose residue of sucrose or fructooligosacchrides. In asparagus (Asparagus officinalis), 6G-FFT is important for the synthesis of inulin neoseries fructan. Here, we report the isolation and functional analysis of the gene encoding asparagus 6G-FFT. * A cDNA clone was isolated from asparagus cDNA library. Recombinant protein was produced by expression system of Pichia pastoris. To measure enzymatic activity, recombinant protein was incubated with sucrose, 1-kestose, 1-kestose and sucrose, or neokestose. The reaction products were detected by high performance anion-exchange chromatography. * The deduced amino acid sequence of isolated cDNA was similar to that of fructosyltransferases and vacuolar type invertases from plants. Recombinant protein mainly produced inulin neoseries fructan, such as 1F, 6G-di-beta-D-fructofuranosylsucrose and neokestose. * Recombinant protein demonstrates 6G-FFT activity, and slight fructan:fructan 1-fructosyltransferase (1-FFT) activity. The ratio of 6G-FFT activity to 1-FFT activity was calculated to be 13. The characteristics of the recombinant protein closely resemble those of the 6G-FFT from asparagus roots, except for a difference in accompanying 1-FFT activity.  相似文献   

8.
9.
Although fructans occur widely in several plant families and they have been a subject of investigation for decennia, the mechanism of their biosynthesis is not completely elucidated. We succeeded in purifying a fructan: fructan 1-fructosyl transferase (1-FFT; EC 2.4.1.100) from chicory roots (Cichorium intybus L. var. foliosum cv. Flash). In combination with the purified chicory root sucrose: sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99), this enzyme synthesized a range of naturally occurring chicory fructans (inulins) from sucrose as the sole substrate. Starting from physiologically relevant sucrose concentrations, inulins up to a degree of polymerization (DP) of about 20 were synthesized in vitro after 96 h at 0°C. Neither 1-SST, nor 1-FFT alone could mediate the observed fructan synthesis. Fructan synthesis in vitro was compared starting from 50, 100 and 200 mM sucrose, respectively. The initiation of (DP > 3)-fructan synthesis was found to be correlated with a certain ratio of 1 kestose to sucrose. The data presented now provide strong evidence to validate the 1-SST/1-FFT model for in-vivo fructan synthesis, at least in the Asteraceae.Abbreviations DP degree of polymerization - 1-FFT fructan: fructan 1-fructosyl transferase - 1-SST sucrose: sucrose 1-fructosyl transferase The authors thank E. Nackaerts for valuable technical assistance. W. Van den Ende is grateful to the National Fund for Scientific Research (NFSR Belgium) for giving a grant for research assistants.  相似文献   

10.
Fructan (polyfructosylsucrose) is an important storage carbohydrate in many plant families. fructan:fructan 6G-fructosyltransferase (6G-FFT) is a key enzyme in the formation of the inulin neoseries, a type of fructan accumulated by members of the Liliales. We have cloned the 6G-FFT from onion by screening a cDNA library using barley sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. The deduced amino acid sequence showed a high homology with plant invertases and 6-SFT. Incubation of protein extracts from transgenic tobacco plants with the trisaccharide 1-kestose and sucrose resulted in the formation of neokestose and fructans of the inulin neoseries with a degree of polymerization up to six. Introduction of the onion 6G-FFT into chicory resulted in the synthesis of fructan of the inulin neoseries, in addition to the synthesis of linear inulin.  相似文献   

11.
12.
To study the regulation of fructan synthesis in plants, we isolated two full-size cDNA clones encoding the two enzymes responsible for fructan biosynthesis in Jerusalem artichoke ( Helianthus tuberosus ): 1-sucrose:sucrose fructosyl transferase (1-SST) and 1-fructan:fructan fructosyl transferase (1-FFT). Both enzymes have recently been purified to homogeneity from Jerusalem artichoke tubers (Koops and Jonker (1994) J. Exp. Bot. 45, 1623–1631; Koops and Jonker (1996) Plant Physiol. 110, 1167–1175) and their amino acid sequences have been partially determined. Using RT–PCR and primers based on these sequences, specific fragments of the genes were amplified from tubers of Jerusalem artichoke. These fragments were used as probes to isolate the cDNAs encoding 1-SST and 1-FFT from a tuber-specific λZAP library. The deduced amino acid sequences of both cDNAs perfectly matched the sequences of the corresponding purified proteins. At the amino acid level, the cDNA sequences showed 61% homology to each other and 59% homology to tomato vacuolar invertase. Based on characteristics of the deduced amino acid sequence, the first 150 bp of both genes encode a putative vacuolar targeting signal. Southern blot hybridization revealed that both 1-SST and 1-FFT are likely to be encoded by single-copy genes. Expression studies based on RNA blot analysis showed organ-specific and developmental expression of both genes in growing tubers. Lower expression was detected in flowers and in stem. In other organs, including leaf, roots and dormant tubers, no expression could be detected. In tubers, the spatial and developmental expression correlates with the accumulation of fructans. Using the 1-sst and 1-fft cDNAs, chimeric genes were constructed driven by the CaMV 35S promoter. Analysis of transgenic petunia plants carrying these constructs showed that both cDNAs encode functional fructosyltransferase enzymes. Plants transformed with the 35S- 1-sst construct accumulated the oligofructans 1-kestose (GF2), 1,1-nystose (GF3) and 1,1,1-fructosylnystose (GF4). Plants transformed with the 35S- 1-fft construct did not accumulate fructans, probably because of the absence of suitable substrates for 1-FFT, i.e. fructans with a degree of polymerization ≥ 3 (GF2, GF3, etc.). Nevertheless, protein extracts from these transgenic plants were able to convert GF3, when added as a substrate, into fructans with a higher degree of polymerization. Progeny of crosses between a 35S- 1-sst -containing plant and a 35S- 1-fft- containing plant, showed accumulation of high-molecular-weight fructans in old, senescent leaves. Based on the comparison of the predicted amino acid sequences of 1-sst and 1-fft with those of other plant fructosyl transferase genes, we postulate that both plant fructan genes have evolved from plant invertase genes.  相似文献   

13.
* Fructan is the major nonstructural carbohydrate reserve in temperate grasses. To understand regulatory mechanisms in fructan synthesis and adaptation to cold environments, the isolation, functional characterization and genetic mapping of fructosyltransferase (FT) genes in perennial ryegrass (Lolium perenne) are described. * Six cDNAs (prft1-prft6) encoding FTs were isolated from cold-treated ryegrass plants, and three were positioned on a perennial ryegrass linkage map. Recombinant proteins were produced in Pichia pastoris and enzymatic activity was characterized. Changes in carbohydrate levels and mRNA levels of FT genes during cold treatment were also analysed. * One gene encodes sucrose-sucrose 1-fructosyltransferase (1-SST), and two gene encode fructan-fructan 6G-fructosyltransferase (6G-FFT). Protein sequences for the other genes (prfts 1, 2 and 6) were similar to sucrose-fructan 6-fructosyltransferase (6-SFT). The 1-SST and prft1 genes were colocalized with an invertase gene on the ryegrass linkage map. The mRNA levels of prft1 and prft2 increased gradually during cold treatment, while those of the 1-SST and 6G-FFT genes first increased, but then decreased before increasing again during a longer period of cold treatment. * Thus at least two different patterns of gene expression have developed during the evolution of functionally diverse FT genes, which are associated in a coordinated way with fructan synthesis in a cold environment.  相似文献   

14.
The onion fructosyltransferase fructan:fructan 6G-fructosyltransferase (6G-FFT) synthesizes fructans of the inulin neo-series using 1-kestose as a substrate. 6G-FFT couples a fructosyl residue to either the terminal glucose via a (2-6) linkage or a terminal fructose via a (2-1) linkage. The sucrose-binding box is present at the N-terminus of invertases and fructosyltransferases. We tested its function by producing swaps of the first 36 amino acids of 6G-FFT with that of onion sucrose:sucrose 1-fructosyltransferase (1-SST) (SST-GFT) and vacuolar invertase (INV-GFT). In contrast to 6G-FFT, invertase and 1-SST are able to utilize sucrose as their only substrate. The chimerical enzymes were unable to use sucrose, but were active when incubated with 1-kestose. INV-GFT synthesized a similar array of fructans as 6G-FFT, in contrast, SST-GFT showed a dramatic shift in activity towards synthesis of (2-1) linkages. Thus the region containing the sucrose-binding box is directing the fructan type synthesized. In invertases, the -fructosidase motif, which is part of the sucrose-binding box, consists of NDPNG/A. This motif is variable in fructosyltransferases and consists of NDPSG in 6G-FFT and ADPNA in 1-SST of onion. We studied the importance of the 6G-FFT -fructosidase motif using mutants S87N (NDPNG) and N84A;S87N (ADPNG). S87N has 6G-FFT activity, whereas N84A;S87N has a activity that was shifted towards synthesis of (2-1) linkages. This is in agreement with the observed activities of the chimerical proteins and indicates that the -fructosidase motif of the sucrose-binding box is specifying the fructan type synthesized.  相似文献   

15.
Sucrose (Suc):Suc 1-fructosyltransferase (1-SST) is the key enzyme in plant fructan biosynthesis, since it catalyzes de novo fructan synthesis from Suc. We have cloned 1-SST from onion (Allium cepa) by screening a cDNA library using acid invertase from tulip (Tulipa gesneriana) as a probe. Expression assays in tobacco (Nicotiana plumbaginifolia) protoplasts showed the formation of 1-kestose from Suc. In addition, an onion acid invertase clone was isolated from the same cDNA library. Protein extracts of tobacco protoplasts transformed with this clone showed extensive Suc-hydrolyzing activity. Conditions that induced fructan accumulation in onion leaves also induced 1-SST mRNA accumulation, whereas the acid invertase mRNA level decreased. Structurally different fructan molecules could be produced from Suc by a combined incubation of protein extract of protoplasts transformed with 1-SST and protein extract of protoplasts transformed with either the onion fructan:fructan 6G-fructosyltransferase or the barley Suc:fructan 6-fructosyltransferase.  相似文献   

16.
Remarkably, within the Asteraceae, a species-specific fructan pattern can be observed. Some species such as artichoke (Cynara scolymus) and globe thistle (Echinops ritro) store fructans with a considerably higher degree of polymerization than the one observed in chicory (Cichorium intybus) and Jerusalem artichoke (Helianthus tuberosus). Fructan:fructan 1-fructosyltransferase (1-FFT) is the enzyme responsible for chain elongation of inulin-type fructans. 1-FFTs were purified from chicory and globe thistle. A comparison revealed that chicory 1-FFT has a high affinity for sucrose (Suc), fructose (Fru), and 1-kestose as acceptor substrate. This makes redistribution of Fru moieties from large to small fructans very likely during the period of active fructan synthesis in the root when import and concentration of Suc can be expected to be high. In globe thistle, this problem is avoided by the very low affinity of 1-FFT for Suc, Fru, and 1-kestose and the higher affinity for inulin as acceptor substrate. Therefore, the 1-kestose formed by Suc:Suc 1-fructosyltransferase is preferentially used for elongation of inulin molecules, explaining why inulins with a much higher degree of polymerization accumulate in roots of globe thistle. Inulin patterns obtained in vitro from 1-kestose and the purified 1-FFTs from both species closely resemble the in vivo inulin patterns. Therefore, we conclude that the species-specific fructan pattern within the Asteraceae can be explained by the different characteristics of their respective 1-FFTs. Although 1-FFT and bacterial levansucrases clearly differ in their ability to use Suc as a donor substrate, a kinetic analysis suggests that 1-FFT also works via a ping-pong mechanism.  相似文献   

17.
In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 °C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions prevailing in the Cerrado during winter.  相似文献   

18.
19.
 Seeds of Cichorium intybus L. var. foliosum cv. Flash were sown in acid-washed vermiculite and grown in a controlled-environment growth chamber. After 1 month of growth, plantlets did not contain sucrose:sucrose 1-fructosyltransferase (1-SST), the key enzyme in fructan biosynthesis. No fructan could be observed. Some of the plants were submitted to drought for 2 weeks. Glucose, fructose and sucrose concentrations increased in roots and leaves of stressed plants and the fructan concentration in roots and leaves was ten times higher than in control plants. The onset of fructan synthesis coincided with the increase in 1-SST activity in roots. Expression of the 1-SST gene could be observed in roots and leaves of stressed plants. Received: 12 July 1999 / Accepted: 16 October 1999  相似文献   

20.
Koops AJ  Jonker HH 《Plant physiology》1996,110(4):1167-1175
Sucrose:sucrose 1-fructosyltransferase (1-SST), an enzyme involved in fructan biosynthesis, was purified to homogeneity from tubers of Helianthus tuberosus that were harvested in the accumulation phase. Gel filtration under native conditions predicted a molecular mass of about 67 kD. Electrophoresis or gel filtration under denaturing conditions yielded a 27- and a 55-kD fragment. 1-SST preferentially catalyzed the conversion of sucrose into the trisaccharide 1-kestose (GF2). Other reactions catalyzed by 1-SST at a lower rate were self-transfructosylations with GF2 and 1,1-nystose (GF3) as substrates yielding GF3 and 1,1,1-fructosylnystose, respectively, as products. 1-SST also catalyzed the removal of the terminal fructosyl unit from both GF2 and GF3, which resulted in the release of sucrose and GF2, respectively, and free Fru. The purified enzyme did not display [beta]-fructosidase activity. An enzyme mixture of purified 1-SST and fructan:fructan 1-fructosyltransferase, both isolated from tubers, was able to synthesize fructans up to a degree of polymerization of at least 13 with sucrose as a sole substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号