首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lophotoxin analogue, bipinnatin-B, is a potent neurotoxin isolated from the gorgonian coral Pseudopterogorgia bipinnata. When tested on the cell body of an identified motor neurone, the fast coxal depressor motor neurone (Df) in the cockroach metathoracic ganglion, bipinnatin-B, at concentrations of 10 micronM,partially blocked nicotine-induced depolarization. Blockade of the response to nicotine was almost complete at 30 micronM bipinnatin-B, and was partially reversible on rebathing the preparation in normal saline. Responses of the same neurone to GABA were unaffected by 30 micronM bipinnatin-B.  相似文献   

2.
Nicotinic acetylcholine receptors (nAChRs) are pentamers formed by subunits from a large multigene family and are highly variable in kinetic, electrophysiological and pharmacological properties. Due to the essential roles of nAChRs in many physiological procedures and diversity in function, identifying the function-related sites specific to each subunit is not only necessary to understand the properties of the receptors but also useful to design potential therapeutic compounds that target these macromolecules for treating a series of central neuronal disorders. By conducting a detailed function divergence analysis on nine neuronal nAChR subunits from representative vertebrate species, we revealed the existence of significant functional variation between most subunit pairs. Specifically, 44 unique residues were identified for the α7 subunit, while another 22 residues that were likely responsible for the specific features of other subunits were detected. By mapping these sites onto the 3?D structure of the human α7 subunit, a structure-function relationship profile was revealed. Our results suggested that the functional divergence related sites clustered in the ligand binding domain, the β2–β3 linker close to the N-terminal α-helix, the intracellular linkers between transmembrane domains, and the “transition zone” may have experienced altered evolutionary rates. The former two regions may be potential binding sites for the α7* subtype-specific allosteric modulators, while the latter region is likely to be subtype-specific allosteric modulations of the heteropentameric descendants such as the α4β2* nAChRs.

Communicated by Ramaswamy H. Sarma  相似文献   


3.
Previous studies have established the presence of overlapping binding sites for the noncompetitive antagonists (NCAs) amobarbital, tetracaine, and 3-trifluoromethyl-3-(m-[(125)I]iodophenyl) diazirine ([(125)I]TID) within the ion channel of the Torpedo nicotinic acetylcholine receptor (AChR) in the resting state. These well-characterized NCAs and competitive radioligand binding and photolabeling experiments were employed to better characterize the interaction of the dissociative anesthetics ketamine and thienylcycloexylpiperidine (TCP) with the resting AChR. Our experiments yielded what appear to be conflicting results: (i) both ketamine and TCP potentiated [(125)I]TID photoincorporation into AChR subunits; and (ii) ketamine and TCP had very little effect on [(14)C]amobarbital binding. Nevertheless, (iii) both ketamine and TCP completely displaced [(3)H]tetracaine binding (K(i)s approximately 20.9 and 2.0 microM, respectively) by a mutually exclusive mechanism. To reconcile these results we propose that, in the resting ion channel, TCP and ketamine bind to a site that is spatially distinct from the TID and barbiturate locus, while tetracaine bridges both binding sites.  相似文献   

4.
The interactions of eight piperidine derivatives with nicotinic receptor complexes fromTorpedo californica electric organ were studied using [125I]alpha-bungarotoxin ([125I]BGT) as a probe for the acetylcholine binding site and [3H]perhydrohistrionicotoxin ([3H]H12-HTX) as a probe for a site associated with the receptor-gated ion channel.Cis- andtrans-2-methyl-6-n-undecanyl piperidines (MUP), major constituents of fire ant venom, had a high-affinity for [3H]H12-HTX binding sites (Ki=0.08–0.24 M), but had no affect on receptor binding. MUP affinity for [3H]H12-HTX binding sites was approximately doubled in the presence of 1 M carbamylcholine. Introduction of a 2-hydroxyl group to the undecanyl side channel had little effect on activity of the alkaloid. The analog 2,6- (but not 3,5-) dimethylpiperidine was a moderately active inhibitor of [3H]H12-HTX binding (K i-8.8 M). 2-Methylpiperidine was considerably less active (K i=600 M), although it was more potent than either 3- or 4-methylpiperidine. The affinities of 2,6-dimethylpiperidine and 2-methylpiperidine for [3H]H12-HTX binding sites were decreased in the presence of 1 M carbamylcholine. Carbamylcholine affinity for the receptor was increased by up to 7 fold in the presence of 10 and 32 M MUP, but was decreased in the presence of 2,6-dimethylpiperidine and 2-methylpiperidine. Thecis- andtrans-isomers of MUP were equipotent in producing each of its effects. In these actions, MUP resembles a variety of other compounds derived from 2,6-disubstituted piperidines, including histrionicotoxins, gephyrotoxins and pumiliotoxins. These studies establish the importance of alkyl substitutions in theortho position of the piperidine ring in conferring ion channel specificity, and the importance of substantial alkyl side chains in conferring the ability of channel blockers to stabilize the nicotinic receptor complex in high affinity, desensitized conformations.  相似文献   

5.
Abstract  Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems. The nAChR agonist-binding site is present at the interface of adjacent subunits and is formed by loops A–C present in α subunits together with loops D–F present in either non-α subunits or homomer-forming α subunits. Although Y151 in loop B has been identified as important in agonist binding, various residues at the 151-site are found among vertebrate and invertebrate nAChR α subunits, such as F151. In Xenopus oocytes expressing Nlα1 or Nlα1Y151F plus rat β2, Y151F mutation was found to significantly change the rate of receptor desensitization and altered the pharmacological properties of acetylcholine, but not imidacloprid, including the decrease of I max, the increase of EC50 (the concentration causing 50% of the maximum response) and the fast time-constant of decay (τf). By comparisons of residue structure, the hydroxyl group in the side chain of Y151 was thought to be important in the interaction between Nlα1/β2 nAChRs and acetylcholine, and the phenyl group to be important between Nlα1/β2 nAChRs and imidacloprid.  相似文献   

6.
7.
Summary Relationship between the size of the molecule in the series of organic ions Et3N–(CH2)5–N+R1R2R3 (R i -alkyl or cycloalkyl substituents) and their abilities to block nicotinic acetylcholine receptors (AChRs) due to their open-channel blockade in the neurons of autonomic ganglia and in frog end-plate was analyzed.All low-energy equilibrium conformations of the drugs were calculated by the molecular mechanics method. A unique rectangular channel profile 6.1×8.3 Å. for which the best correlation between blocking activity of the drugs and total population of their conformations being able to penetrate into the channel, was deduced from all those tested.  相似文献   

8.
Activation by acetylcholine of a nicotinic acetylcholine receptor on the membrane of bovine chromaffin cells leads to membrane depolarization and to the subsequent triggering of catecholamine secretion. It is evident that acetylcholine receptors play a central role in the initial phase of the secretion process and, therefore, an extensive characterization of their molecular components and properties is of fundamental interest. With this intention, we have screened bovine adrenal medullary cDNA libraries with a probe coding for a fragment of the rat muscle acetylcholine receptor subunit. Several cDNA clones were isolated. The longest cDNA had an open reading frame encoding a 495-amino acid protein with a molecular weight of 56,911. The deduced primary structure contains features that indicate that the encoded protein is an or acetylcholine binding subunit, and, in fact, it manifests significant sequence similarity to previously cloned subunits. Sequence identity is particularly high with the 3 subunit, which is expressed in the rat pheochromocytoma PC12 cell line and in several brain areas, and consequently, it is considered a component of a neuronal acetylcholine receptor. Accordingly, the present results suggest that the agonist binding subunit of the nicotinic acetylcholine receptor from bovine chromaffin cells is an 3-type subunit, corroborating previous immunological and pharmacological evidence for the presence of a neuronal nicotinic receptor in chromaffin cells.Abbreviations used nAChR nicotinic acetylcholine receptor - SDS sodium dodecyl sulfate - SSC 0.15 M NaCl and 0.015 M sodium citrate - kb kilobases - bp base pairs  相似文献   

9.
Synaptosomes and synaptoneurosomes were prepared from the cerebral cortex of control rats and of rats treated with gabaculine, gamma-vinylGABA (GVG), hydrazine and isonicotinic acid hydrazide (INH). An inverse relationship was observed between the GABA content of the synaptoneurosomes and the muscimol-stimulated chloride ion uptake by the organelles. The relationship held over an extensive range of experimental conditions including different drugs, different dosage levels of the same drug, different time intervals after administration of the same drug, and both single and multiple injections of drugs. The results indicated that the phenomenon was associated with the neurosome component of the preparation, and raised the possibility that GABA levels within the postsynaptic cell might regulate the functioning of the GABAA receptor complexSpecial issue dedicated to Dr. Eugene Roberts.  相似文献   

10.
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively in areas of crop protection and animal health to control a variety of insect pest species. Here, we describe studies performed with nAChR subunits Nlα1 and Nlα2 cloned from the brown planthopper Nilaparvata  lugens , a major insect pest of rice crops in many parts of Asia. The influence of Nlα1 and Nlα2 subunits upon the functional properties of recombinant nAChRs has been examined by expression in Xenopus oocytes. In addition, the influence of a Nlα1 mutation (Y151S), which has been linked to neonicotinoid lab generated resistance in N. lugens , has been examined. As in previous studies of insect α subunits, functional expression has been achieved by co-expression with the mammalian β2 subunit. This approach has revealed a significantly higher apparent affinity of imidacloprid for Nlα1/β2 than for Nlα2/β2 nAChRs. In addition, evidence has been obtained for the co-assembly of Nlα1 and Nlα2 subunits into 'triplet' nAChRs of subunit composition Nlα1/Nlα2/β2. Evidence has also been obtained which demonstrates that the resistance-associated Y151S mutation has a significantly reduced effect on neonicotinoid agonist activity when Nlα1 is co-assembled with Nlα2 than when expressed as the sole α subunit in a heteromeric nAChR. These findings may be of importance in assessing the likely impact of the target-site mutations such as Y151S upon neonicotinoid insecticide resistance in insect field populations.  相似文献   

11.
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that rapidly convert a chemical signal into an electrical signal. Although the structure of the nAChR is quite well described, the coupling between agonist binding and channel gating is still under debate. In this study, we probed local conformational transitions on the neuronal α4β4 nAChR by specifically tethering a conformation-sensitive fluorescent dye on αG98C located on loop 5 (L5), and simultaneously monitoring fluorescence intensity and current after expression in Xenopus oocytes. The potency of acetylcholine (ACh) was significantly higher in the cysteine mutant and further increased upon tetramethylrhodamine-6-maleimide labeling, suggesting a role of L5 in binding or gating. Structural reorganizations of L5 were shown to occur upon activation, as revealed by the fluorescence intensity increase during ACh exposure. Fluorescence changes were also detected at ACh concentrations lower than needed for current activation, suggesting a movement of L5 for a closed, resting or desensitized state. The competitive antagonist dihydro-β-erythroidine also induced a movement of L5 although at concentrations significantly higher than needed for current inhibition. Consequently L5, located inside the lumen of the pentamer, plays a role in both activation and inhibition of the nAChR.  相似文献   

12.
We have determined a high-resolution three-dimensional structure of alpha-conotoxin BuIA, a 13-residue peptide toxin isolated from Conus bullatus. Despite its unusual 4/4 disulfide bond layout alpha-conotoxin BuIA exhibits strong antagonistic activity at alpha6/alpha3beta2beta3, alpha3beta2, and alpha3beta4 nAChR subtypes like some alpha4/7 conotoxins. alpha-Conotoxin BuIA lacks the C-terminal beta-turn present within the second disulfide loop of alpha4/7 conotoxins, having only a "pseudo omega-shaped" molecular topology. Nevertheless, it contains a functionally critical two-turn helix motif, a feature ubiquitously found in alpha4/7 conotoxins. Such an aspect seems mainly responsible for similarities in the receptor recognition profile of alpha-conotoxin BuIA to alpha4/7 conotoxins. Structural comparison of alpha-conotoxin BuIA with alpha4/7 conotoxins and alpha4/3 conotoxin ImI suggests that presence of the second helical turn portion of the two-turn helix motif in alpha4/7 and alpha4/4 conotoxins may be important for binding to the alpha3 and/or alpha6 subunit of nAChR.  相似文献   

13.
A set of seven peptides constituting the various loops and most of the surface areas of -bungarotoxin (BgTX) was synthesized. In appropriate peptides, the cyclical (by a disulfide bond) monomers were prepared. In all cases, the peptides were purified and characterized. The ability of these peptides to bindTorpedo californica acetylcholine receptor (AChR) was studied by radiometric adsorbent titrations. Three regions, represented by peptides 1–16, 26–41, and 45–59, were able to bind125I-labeled AChR and, conversely,125I-labeled peptides were bound by AChR. In these regions, residues Ile-1, Val-2, Trp-28 and/or Lys-38, and one or all of the three residues Ala-45, Ala-46, and Thr-47, are essential contact residues in the binding of BgTX to receptor. Other synthetic regions of BgTX showed little or no AChR-binding activity. The specificity of AChR binding to peptides 1–16, 26–41, and 45–59 was confirmed by inhibition with unlabeled BgTX. It is concluded that BgTX has three main AChR-binding regions (loop I with N-terminal extension and loops II and III extended toward the N-terminal by residues 45–47).  相似文献   

14.
Based on the crystal structure of the extracellular domain (ECD) of the mouse nicotinic acetylcholine receptor (nAChR) alpha1 subunit bound to α-bungarotoxin (α-Btx) we have generated in silico models of the human nAChR α1 bound to α-Btx and α-cobratoxin (α-Cbtx), both in the presence and in the absence of the N-linked carbohydrate chain. To gain further insight into the structural role of glycosylation molecular dynamics (MD) simulations were carried out in explicit solvent so as to compare the conformational dynamics of the binding interface between nAChR α1 and the two toxins. An interesting observation during the course of the MD simulations is the strengthening of the receptor-toxin interaction in the presence of the carbohydrate chain, mediated through a shift in the position of the sugars towards the bound toxin. Critical protein-sugar interactions implicate residues Ser187 and Trp184 of nAChR and Thr6, Ser9, and Thr15 of α-Btx, as well as Thr6 and Pro7 of α-Cbtx. Analysis of the predicted residue-specific intermolecular interactions is intended to inspire biophysical studies on the functional role of glycosylation in the gating mechanism.  相似文献   

15.
The effects of phencyclidine (PCP) and its thienylpyrrolidine analogue (TCPY) were tested on conduction processes in the isolated axon of giant interneurone 2 (GI 2) of the cockroach Periplaneta americana and on binding of [3H]PCP and [125I]α-bungarotoxin to membranes from Periplaneta brain and nerve cord. Their actions on synaptic transmission between cercal sensory neurones and GI 2, where acetylcholine is the likely neurotransmitter, were also examined. PCP suppressed both sodium and potassium currents in the axonal membrane at 5.0 × 10?4 M. Block was reversible on rebathing the axon in normal saline. TCPY exerted similar effects on the axon, though at slightly higher concentrations. Excitatory postsynaptic potentials (EPSPs) recorded from GI 2 in response to electrical stimulation of cercal nerve XI were progressively blocked by 5.0 × 10?4 M PCP following a brief initial enhancement (?10%) of EPSP amplitude. The depolarizing response of GI 2 to ionophoretically applied acetylcholine was also blocked at this concentration, indicating a postsynaptic action of PCP at the acetylcholine receptor-ion channel of GI 2. TCPY also blocked synaptic transmission at synapses between cercal afferents and GI 2, but, in contrast to the actions of PCP, EPSP block was accompanied by depolarization. PCP and TCPY inhibited [3H]PCP binding to nerve cord and brain membranes with multiple affinities, suggesting multiple molecular targets. They also modified aspects of the kinetics of [125I]α-bungarotoxin binding to the nicotinic acetylcholine receptor in these membranes and enhanced conversion of the receptor to the high affinity desensitized state. At higher concentrations they also inhibited [125I]α-bungarotoxin binding. PCP was more potent than TCPY in inhibiting [3H]PCP binding but less potent on [125I]α-bungarotoxin binding. Thus PCP and TCPY, which are structurally very similar, interact with several molecular targets in insect neuronal membranes, including sodium and potassium channels and acetylcholine receptors.  相似文献   

16.
The simple nematode, Caenorhabditis elegans, possesses the most extensive known gene family of nicotinic acetylcholine receptor (nAChR)-like subunits. Whilst all show greatest similarity with nAChR subunits of both invertebrates and vertebrates, phylogenetic analysis suggests that just over half of these (32) may represent other members of the cys-loop ligand-gated ion channel superfamily. We have introduced a novel nomenclature system for these “Orphan” subunits, designating them as lgc genes (ligand-gated ion channels of the cys-loop superfamily), which can also be applied in future to unnamed and uncharacterised members of the cys-loop ligand-gated ion channel superfamily. We present here the resulting updated version of the C. elegans nAChR gene family and related ligand-gated ion channel genes.  相似文献   

17.
Mollusks have received increasing interest in ecotoxicological studies but so far the available scientific analyses of how their genes are affected by anthropogenic pollutants are scarce. The focus of this study is to identify an estrogen receptor (er) gene in the common prosobranch snail Bithynia tentaculata and to test a hypothesis that 17α-Ethinylestradiol (EE2) will modulate er gene expression after short-term exposure. We set up exposure experiments with a total of 144 snails, which were collected from a natural population in southern Sweden. Snails were exposed to either 10 ng/L or 100 ng/L EE2 during 24 h and/or 72 h. From the isolated B. tentaculata RNA we successfully identified and characterized a novel er gene and phylogenetic analyses strongly indicate that the Bithynia er gene is an ortholog to the human ERα (ESR1, NR3A1). We found a significant interaction between EE2-dose and exposure duration on the er's gene expression (Two-way ANOVA; p = 0.04). We also found a significant difference in the gene expression of the er when comparing the control and 100 ng/L treatment groups after 72 h in female snails (One-way ANOVA; p = 0.047). The results from this study should be useful for future field-related studies of estrogen receptors in natural populations of mollusks.  相似文献   

18.
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively to control a variety of insect pest species. Previously, we have identified a nAChR point mutation (Y151S) associated with insecticide resistance in the brown planthopper Nilaparvata lugens . Although this mutation has been identified in two different N. lugens nAChR subunits (Nlα1 and Nlα3) because of difficulties in heterologous expression of Nlα3; its influence on agonist potency has been examined only in Nlα1-containing nAChRs. Here we describe the cloning of a novel nAChR subunit from N. lugens (Nlα8), together with evidence for its co-assembly with Nlα3 in native and recombinant nAChRs. This has, for the first time, enabled the functional effects of the Nlα3Y151S mutation to be examined. The Nlα3Y151S mutation has little effect on agonist potency of acetylcholine but has a dramatic effect on neonicotinoid insecticides (reducing I max values and increasing EC50 values). The apparent affinity of neonicotinoids was higher and the effect of the Y151S mutation on neonicotinoid agonist potency was more profound in Nlα3-containing, rather than Nlα1-containing nAChR. We conclude that Nlα3- and Nlα1-containing nAChRs may be representative of two distinct insect nAChR populations.  相似文献   

19.
It is demonstrated that two classes of binding site for acetylcholine are present on Torpedocalifornica acetylcholine receptor. One class is the well documented site on each of the two subunits of 40,000 daltons, which can be covalently modified by bromocetylcholine. Both in the absence and in the presence of bromoacetylcholine another binding site is shown to exist by virtue of acetylcholine dependent fluorescence changes in the receptor covalently modified by 4-[N-(iodoacetoxy)ethyl-N-methyl]-amino-7-Nitrobenz-2-oxa-1,3 diazole (IANBD). This site has a low affinity for acetylcholine (Kd ~ 80 μM) that corresponds closely with the known concentration dependence of acetylcholine mediated activation of this receptor and we conclude that it may represent a site of association that participates in channel opening in this system.  相似文献   

20.
Haiyan Hu 《FEBS letters》2010,584(8):1549-1552
This work studied the role of cyclic AMP responsive element binding protein (CREB) in the up-regulation of M1 muscarinic acetylcholine receptor (M1 receptor) density by sarsasapogenin (ZMS) in CHO cells transfected with M1 receptor gene (CHOm1 cells). During cell aging, sarsasapogenin elevated M1 receptor density as well as CREB and phosphor-CREB (pCREB) levels. CREB peaked earliest, followed by pCREB and M1 receptor density peaked last. When CREB synthesis was blocked by antisense oligonucleotides, the elevation effect of sarsasapogenin on M1 receptor density was abolished. These results suggest that sarsasapogenin up-regulates M1 receptor density in aged cells by promoting CREB production and phosphorylation. Furthermore, the results support the hypothesis that pCREB regulates M1 receptor gene expression through heterodimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号