首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sequence motifs are becoming increasingly important in the analysis of gene regulation. How do we define sequence motifs, and why should we use sequence logos instead of consensus sequences to represent them? Do they have any relation with binding affinity? How do we search for new instances of a motif in this sea of DNA?  相似文献   

2.
DNA sequence context has long been known to modulate detection and repair of DNA damage. Recent studies using experimental and computational approaches have sought to provide a basis for this observation. We have previously shown that an α-anomeric adenosine (αA) flanked by cytosines (5'CαAC-3') resulted in a kinked DNA duplex with an enlarged minor groove. Comparison of different flanking sequences revealed that a DNA duplex containing a 5'CαAG-3' motif exhibits unique substrate properties. However, this substrate was not distinguished by unusual thermodynamic properties. To understand the structural basis of the altered recognition, we have determined the solution structure of a DNA duplex with a 5'CαAG-3' core, using an extensive set of restraints including dipolar couplings and backbone torsion angles. The NMR structure exhibits an excellent agreement with the data (total R(X) <5.3%). The αA base is intrahelical, in a reverse Watson-Crick orientation, and forms a weak base pair with a thymine of the opposite strand. In comparison to the DNA duplex with a 5'CαAC-3' core, we observe a significant reduction of the local perturbation (backbone, stacking, tilt, roll, and twist), resulting in a straighter DNA with narrower minor groove. Overall, these features result in a less perturbed DNA helix and obscure the presence of the lesion compared to the 5'CαAC-3' sequence. The improved stacking of the 5'CαAG-3' core also affects the energetics of the DNA deformation that is required to form a catalytically competent complex. These traits provide a rationale for the modulation of the recognition by endonuclease IV.  相似文献   

3.
4.
Can the scanning tunneling microscope sequence DNA?   总被引:1,自引:0,他引:1  
A revolutionary new microscope, the scanning tunneling microscope (STM), can image some surfaces at atomic resolution, even in air or water. It can produce high-resolution images of DNA, and we outline what we know of its mechanism, concluding that it may be able to sequence DNA. This application would require major advances in sample preparation in order for the technique to compete with conventional methods. On the other hand, the STM may provide a very useful alternative to gels for probing sequence-directed structural features.  相似文献   

5.
6.
A gene encoding β-glucosidase from Cellvibrio gilvus, a cellobiose-producing bacterium, was cloned into Escherichia coli and sequenced. The structural gene consisted of 2565 bp encoding 854 amino acid residues with a characteristic signal peptide. A typical promoter sequence and SD region were located upstream of the initiation ATG codon. A sequence (180 amino acids) having high homology with those of β-glucosidases from several microorganisms was found in the deduced amino acid sequence of C. gilvus β-glucosidase. This sequence contains the aspartic acid residue which was found to be an active site residue in Aspergillus wentii β-glucosidase A3. The β-glucosidase gene of C. gilvus contains a high amount (69.4%) of G+C. These bases are localized not in the 3rd position of the codon, as is usually observed in G+C-rich genes, but rather in the 1st position. This result in a peptide which contains an extremely high amount (48%) of four amino acids (Pro, Ala, Arg, Gly) coded by CCN, GCN, CGN, and GGN.  相似文献   

7.
8.
9.
10.
A collaborative study from two laboratories has been undertaken to re-evaluate the human follitropin β-subunit sequence (hFSHβ), since areas of uncertainty remain in the wake of two earlier reports. The first report was by Shome and Parlow (1974). The second, by Saxena and Rathnam (1976), proposed revisions for sequence not definitively placed in the first study, as well as some differences in other placements. We have re-examined the sequence of the hFSHβ with more recent methodology. This has led to revision of certain areas of the sequence and resolution of differences between the two earlier proposals. Specifically, an-Ile-Ser- is established at 21–22, Asp at 41, Arg at 44, Lys at 46, and Glu at 111. These were areas of disagreement in the earlier proposals. A definitive placement of the residues around tryptophan-27 has now been obtained by three laboratories. C-terminal heterogeneity was observed with subunits ending at residue 107, 109, or 111. N-terminal heterogeneity has been observed in all preparations examined to date. A significant population of molecules with a proteolytic nick between residues 38–39 is noted. This is very likely an artifact of the collection and processing. The preparations examined in the present studies showed no evidence of residues 112–118 proposed by Saxena and Rathnam.  相似文献   

11.
A sequence of 89 nucleotides from rabbit beta-globin mRNA has been determined and is shown to code for residues 107 to 137 of the beta-globin protein. In addition, a sequence heterogeneity has been identified within this 89 nucleotide long sequence which corresponds to a known polymorphic variant of rabbit beta-globin.Images  相似文献   

12.
Our previous work on structural polymorphism shown at a single nucleotide polymorphism (SNP) (A→G) site located on HS4 region of locus control region (LCR) of β-globin gene has established a hairpin→duplex equilibrium corresponding to A→B like DNA transition (Kaushik M, Kukreti, R., Grover, D., Brahmachari, S.K. and Kukreti S. Nucleic Acids Res. 2003; Kaushik M, Kukreti S. Nucleic Acids Res. 2006). The G-allele of A→G SNP has been shown to be significantly associated with the occurrence of β-thalassemia. Considering the significance of this 11-nt long quasi-palindromic sequence [5′-TGGGG(G/A)CCCCA; HP(G/A)11] of β-globin gene LCR, we further explored the differential behavior of the same DNA sequence with its RNA counterpart, using various biophysical and biochemical techniques. In contrast to its DNA counterpart exhibiting a A→B structural transition and an equilibrium between duplex and hairpin forms, the studied RNA oligonucleotide sequence [5′-UGGGG(G/A)CCCCA; RHP(G/A)11] existed only in duplex form (A-conformation) and did not form hairpin. The single residue difference from A to G led to the unusual thermal stability of the RNA structure formed by the studied sequence. Since, naturally occurring mutations and various SNP sites may stabilize or destabilize the local DNA/RNA secondary structures, these structural transitions may affect the gene expression by a change in the protein–DNA recognition patterns.  相似文献   

13.
14.
A full-length β-tubulin gene has been cloned and sequenced from Gigaspora gigantea and Glomus clarum, two arbuscular mycorrhizal fungi (AMF) species in the phylum Glomeromyota. The gene in both species is organized into five exons and four introns. Both genes are 94.9% similar and encode a 447 amino acid protein. In comparison with other fungal groups, the amino acid sequence is most similar to that of fungi in the Chytridiomycota. The codon usage of the gene in both AMF species is broad and biased in favor of an A or a T in the third position. The four introns varied in length from 87 to 168 bp for G. gigantea and from 90 to 136 bp for G. clarum. Of all fungi in which full-length sequences have been published, only AMF do not have an intron before codon 174. The introns positioned at codons 174 and 257 in AMF match the position of different introns in β-tubulin genes of some Zygomycete, Basidiomycete, and Ascomycete fungi. The 5′ and 3′ splice site consensus sequences are similar to those found in introns of most fungi. Sequence analysis from single-strand conformation polymorphism analysis confirmed the presence of two β-tubulin gene copies in G. clarum, but only one copy was evident in G. gigantea based on Southern hybridization analysis.  相似文献   

15.
We have previously described a low-molecular-weight DNA polymerase (52 kDa) from wheat embryo: DNA polymerase CI (pol CI). This enzyme shares some biochemical properties with animal DNA polymerase (pol ). In this report, we analyse pol CI in wheat embryo germination. Immunodetection and measurement of the enzyme activity show that wheat pol CI remains at a constant level during germination, whereas dramatic changes of the replicative DNA polymerase A and B activities were previously reported. We observe that the level of pol CI in physiological conditions (embryo germination and dividing cell culture) is in agreement with a pol -type DNA polymerase. By microsequencing of the electroblotted 52 kDa polypeptide, we determined the sequence of a dodecapeptide from the N-terminal region. A comparative analysis of the N-terminal pol CI peptide with some mammalian pol sequences shows a clear homology with helix 1 of the N-terminal ssDNA domain (residues 15 to 26) of the rat pol . Thus, the helical structure of this region should be conserved in the wheat peptide. This represents the first evidence of a partial primary structure of a -type DNA polymerase in plants.  相似文献   

16.
17.
The major histocompatibility complex (MHC) of the rat (RT1 complex) encodes two sets of class II molecules referred to as RT1.B and RT1.D. The RT1. B gene was isolated for a Sprague-Dawley (RT1b) rat genomic library using a rat RT1.B chain cDNA as a hybridization probe. The coding and the majority of the intron DNA sequence was determined. The structure of the RT1. B gene is equivalent to that of H-2 and HLA chain genes. Comparison of the nucleotide and predicted amino acid sequences of the RT1.B gene with those of the H-2 and HLA genes revealed a high degree of overall sequence conservation. However, two regions of the first external domain (l), residues 19–23 and 45–78, exhibit marked sequence variation. Two blocks of conserved nucleotide sequence were identified in the 5 promoter region of the RT1. B gene that have been described in all MHC class II genes sequenced to date. These conserved sequences may be involved in the coordinate regulation of expression of class II genes. The cloned RT1.B gene was efficiently transcribed when transfected to mouse L cells.  相似文献   

18.
WRAP53β是一种具有WD40结构域的蛋白质,在维护卡哈尔体稳定、RNA剪接、端粒延伸等方面起着至关重要的作用.WRAP53β功能紊乱与先天性角化不良、肿瘤、进行性脊髓性肌萎缩、过早老化等疾病有关.近两年研究发现WRAP53β是DNA双链断裂修复(DSBs)的一个重要支架蛋白,它以一种依赖于ATM、H2AX、MDC1的方式被募集至损伤位点并磷酸化,其WD40结构域可募集泛素E3连接酶RNF8,将DSBs位点附近的组蛋白H2AX泛素化,促进下游修复因子的聚集,引起DNA损伤后的修复作用.为此,我们重点综述了现阶段WRAP53β在DNA损伤修复方面的具体作用及机制.  相似文献   

19.
DNA polymerase β (Pol β) is a 39-kDa enzyme that performs the vital cellular function of repairing damaged DNA. Mutations in Pol β have been linked to various cancers, and these mutations are further correlated with altered Pol β enzymatic activity. The fidelity of correct nucleotide incorporation into damaged DNA is essential for Pol β repair function, and several studies have implicated conformational changes in Pol β as a determinant of this repair fidelity. In this work, the rate constants for domain motions in Pol β have been determined by solution NMR relaxation dispersion for the apo and substrate-bound, binary forms of Pol β. In apo Pol β, molecular motions, primarily isolated to the DNA lyase domain, are observed to occur at 1400 s(-1). Additional analysis suggests that these motions allow apo Pol β to sample a conformation similar to the gapped DNA-substrate-bound form. Upon binding DNA, these lyase domain motions are significantly quenched, whereas evidence for conformational motions in the polymerase domain becomes apparent. These NMR studies suggest an alteration in the dynamic landscape of Pol β due to substrate binding. Moreover, a number of the flexible residues identified in this work are also the location of residues, which upon mutation lead to cancer phenotypes in vivo, which may be due to the intimate role of protein motions in Pol β fidelity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号