首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two cases of true hermaphroditism are presented. Sex differentiation mechanism, X functions in skin development and pigmentation are studied. Lateral gender assignment in hermaphroditism and mythologic concept right side = maleness and left side = femininity are compared.  相似文献   

2.
A high incidence of 46,XX true hermaphroditism exists among southern African blacks. The gonadal distribution and clinical presentation of 38 patients are described. The aim of our study on 11 families with histologically proven XX true hermaphroditism was to determine whether a common genetic or environmental etiology could be identified. Pedigree analysis excluded the presence of a simple inheritance pattern, and no constant environmental factors could be implicated. Hybridization studies with Y chromosome--specific probes (pDP132, pDP61, pDP105, pDP31, pDP97, and pY431-HinfA) excluded the presence of a large portion of Yp in these patients. It is possible that smaller portions of the Y chromosome or one or more X-linked or autosomal mutations, either interacting and/or with incomplete penetrance, are present.  相似文献   

3.
True hermaphroditism is a very rare disorder of human sexual differentiation. In the medical literature, more than 450 cases are described, and about 250 true hermaphrodites have been subjected to chromosome studies. A 21-year-old "man" was examined because of genital and phenotypic abnormalities: clinical, surgical and laboratory investigations showed a true hermaphroditism, with a quadruple mosaicism 45,X/46,XX/46,XY/47,XXY. We believe that this is the first case in which this peculiar type of multiple mosaicism has been documented.  相似文献   

4.

Fewer than 1% of vertebrate species are hermaphroditic, and essentially all of these are fishes. Four types of hermaphroditism are known in fishes: simultaneous (or synchronous) hermaphroditism (SH), protandry (male-to-female sex change; PA), protogyny (female-to-male sex change; PG), and bidirectional sex change (BS or reversed sex change in protogynous species). Here we present an annotated list of hermaphroditic fish species from a comprehensive review and careful re-examination of all primary literature. We confirmed functional hermaphroditism in more than 450 species in 41 families of 17 teleost orders. PG is the most abundant type (305 species of 20 families), and the others are much less abundant, BS in 66 species of seven families, SH in 55 species of 13 families, and PA in 54 species of 14 families. The recently proposed phylogenetic tree indicated that SH and PA have evolved several times in not-closely related lineages of Teleostei but that PG (and BS) has evolved only in four lineages of Percomorpha. Examination of the relation between hermaphroditism type and mating system in each species mostly supported the size-advantage model that predicts the evolution of sequential hermaphroditism. Finally, intraspecific variations in sexual pattern are discussed in relation to population density, which may cause variation in mating system.

  相似文献   

5.
This study examined the differential diagnosis of inguinoscrotal masses and true hermaphroditism as well as incarcerated inguinal hernia in the differential diagnosis of abnormal inguinoscrotal masses. Inguinoscrotal masses are a rare presentation of true hermaphroditism. A child with an inguinoscrotal mass of the right groin and penoscrotal hypospadias was diagnosed. Our case suggested that abnormal inguinoscrotal masses occur in true hermaphroditism as well as incarcerated inguinal hernia. These congenital anomalies should be considered in the differential diagnosis of inguinoscrotal masses of the groin.  相似文献   

6.
True hermaphroditism usually appears with ambiguous genitalia requiring extensive evaluation during the neonatal period. There have been occasional cases with better differentiation of external genitalia, leading to delays in diagnosis. We report the case of an adolescent boy with true hermaphroditism who presented with normal external genitalia and no sexual ambiguity. He was referred due to progressive gynecomastia and arrest of puberty. He presented at the age of 16 years for gynecomastia of rapid progression with normal penile development and both gonads in scrotum and normal testosterone and increased gonadotropin levels. Gonadal ultrasound scan was compatible with testicular and ovarian tissues in scrotum, and the karyotype showed two cellular lines (46,XX/46,XY). Gonadal histology revealed bilateral ovotestes. A genotype polymerase chain reaction mediated analysis using seven microsatellite markers did not confirm chimerism. Clinical findings and mechanism of generation are discussed.  相似文献   

7.
Summary A total of 30 cases of 46,XX true hermaphroditism was analysed for Y-DNA sequences including the recently cloned gene for male testis-determination SRY. In 3 cases, a portion of the Y chromosome including SRY was present and, in 2 cases, was localised, to Xp22 by in situ hybridisation. Since previous studies have shown that the majority of XX males are generated by an X-Y chromosomal interchange, the Xp22 position of the Yp material suggests that certain cases of hermaphroditism can arise by the same meiotic event. The phenotype in the 3 SRY-positive cases may be caused by X-inactivation resulting in somatic mosaicism of testis-determining factor expression giving rise to both testicular and ovarian tissues. Autosomal or X-linked mutation(s) elsewhere in the sex-determining pathway may explain the phenotype observed in the remaining 27 SRY-negative cases.  相似文献   

8.
Summary Two types of hermaphroditism were experimentally induced in genetically female fowls by grafting of embryonic testes in embryos. Of the 27 hermaphrodites observed during the 8 months after hatching, 20 possessed a right testis and a left ovary and 7 a right testis and a left ovotestis. The testes and ovotestes contained seminiferous tubules with a more or less developed germ cell complement, attaining in many cases the early spermatid stage. The interstitial tissue was poorly functional, as shown by the absence of male secondary sex characters. The ovary or ovarian part of the ovotestes possessed numerous small ovarian follicles. The female arrangement of the plumage and the absence of spurs demonstrated the secretion of oestrogens. A mechanism is proposed for explaining this partial masculinization of genetically female gonads, a phenomenon which occurs during the period of embryonic sex differentiation, and is responsible for this experimental true hermaphroditism.  相似文献   

9.
True hermaphroditism (TH) is an unusual form of sex reversal, characterized by the development of testicular and ovarian tissue in the same subject. Approximately 60% of the patients have a 46,XX karyotype, 33% are mosaics with a second cell line containing a Y chromosome, while the remaining 7% are 46,XY. Molecular analyses have demonstrated that SRY is present in only 10% of TH with a 46,XX karyotype; therefore, in the remaining 90%, mutations at unknown X-linked or autosomal sex determining loci have been proposed as factors responsible for testicular development. True hermaphroditism presents considerable genetic heterogeneity with several molecular anomalies leading to the dual gonadal development as SRY point mutations or SRY hidden gonadal mosaicism. In order to identify genetic defects associated with subjects with the disease, we performed molecular analyses of the SRY gene in DNA from blood leukocytes and gonadal tissue in 12 true hermaphrodites with different karyotypes. Our results using PCR and FISH analyses reveal the presence of hidden mosaicism for SRY or other Y sequences in some patients with XX true hermaphroditism and confirms that mosaicism for SRY limited to the gonads is an alternative mechanism for testicular development in 46,XX true hermaphrodites.  相似文献   

10.
Summary A search for Y-specific DNA sequences has been performed in a sample of seven 46,XX true hermaphrodites and one 45,X mixed gonadal dysgenesis case and compared with a sample of 11 XX males. Using six Y-specific DNA probes no hybridization signal was obtained in the hermaphrodite group; in contrast, all XX males gave a positive signal with at least one probe. This difference is statistically highly significant. We conclude that the aetiology of true hermaphroditism is different from that of the XX male syndrome. As all cases of the hermaphrodite group are positive for the serological sex-specific antigen (Sxs) it is concluded that this antigen can be present even in the absence of Y-specific DNA.  相似文献   

11.
This report discusses the clinical findings on two patients with 45,X/46,XY mosaicism, two boys presented with penile hypospadias and cryptorchidism. A dysgenetic ovary and a testis were found in one boy, and a dysgenetic ovary in the other. Both patients can be considered to be true hermaphrodites on the basis of histology and clinical and hormonal observations. 45,X/46,XY mosaics have a wide range of phenotypic appearances and their gonadal morphology can also show great differences. However, the incidence of true hermaphroditism in individuals with 45,X/46,XY mosaicism is low and the reports in the literature rare. It is likely that males with 45,X/46,XY who suffer only mild maldevelopment of the external genitalia will not be recognized. In all patients with penoscrotal hypospadias and cryptorchidism with 45,X/46,XY mosaicism, the possibility of true hermaphroditism should be considered.  相似文献   

12.
Surveys of plant breeding systems in angiosperm families have shown a significant association between monoecy and dioecy, and researchers have proposed that dioecy has tended to evolve from monoecy. We evaluated this hypothesis in the context of a phylogeny of 918 monocotyledons assembled from 19 published trees. Binary and multistate breeding system characters were mapped onto a set of composite trees, and alternative models of character change were compared using maximum likelihood. Over a range of tree topologies and optimizations, we found three to eight times as many changes from hermaphroditism to dioecy as we did from monoecy to dioecy. Also, the rate at which monoecy gave rise to dioecy was not significantly higher than the rate at which hermaphroditism gave rise to dioecy. Our analysis implies that the correlation of monoecy and dioecy in angiosperm families does not reflect a preponderance of changes from monoecy to dioecy. Instead, we postulate that the family-level correlation results from the clustering of breeding system changes in the underlying phylogeny. Our results suggest renewed attention to modeling the transition from hermaphroditism to dioecy, possibly involving transient intermediates such as gynodioecy.  相似文献   

13.
Investigation of the ZFY gene in XX true hermaphroditism and Swyer syndrome   总被引:2,自引:0,他引:2  
Summary Four patients with 46,XX true hermaphroditism and one patient with 46,XY pure gonadal dysgenesis (Swyer syndrome) were analyzed with a Y chromosome-derived probe that detects a specific fragment on the short arm of the Y chromosome in the putative testicle-determining region and also a fragment on the short arm of the X chromosome. Normal males and females, an individual with Turner syndrome, and patients with various causes of anomalous gonadal differentiation accompanied by cytogenetically present Y chromosome were used as controls. The Y-specific fragment was not detected in any of the persons with 46,XX true hermaphroditism. However, this fragment was positive in the 46,XY female and in all Y-bearing patients. Cytogenetic and molecular absence of the ZFY sequence in 46,XX true hermaphrodites calls for explanations other than the classic embryogenie theory. The absence of testicular differentiation in the ZFY-positive XY female evidences functionally altered sex determination or, alternatively, defective gonadal receptors.  相似文献   

14.
Summary The syndrome of 46,XX true hermaphroditism is a clinical condition in which both ovarian and testicular tissue are found in one individual. Both Mullerian and Wolffian structures are usually present, and external genitalia are often ambiguous. Two alternative mechanisms have been proposed to explain the development of testicular tissue in these subjects: (1) translocation of chromosomal material encoding the testicular determination factor (TDF) from the Y to the X chromosome or to an autosome, or (2) an autosomal dominant mutation that permits testicular determination in the absence of TDF. We have investigated five subjects with 46,XX true hermaphroditism. Four individuals had a normal 46,XX karyotype; one subject (307) had an apparent terminal deletion of the short arm of one X chromosome. Genomic DNA was isolated from these individuals and subjected to Southern blot analysis. Only subject 307 had Y chromosomal sequences that included the pseudoautosomal boundary, SRY (sex-determining region of Y), ZFY (Y gene encoding a zinc finger protein), and DXYS5 (an anonymous locus on the distal short arm of Y) but lacked sequences for DYZ5 (proximal short arm of Y) and for the long arm probes DYZ1 and DYZ2. The genomic DNA of the other four subjects lacked detectable Y chromosomal sequences when assayed either by Southern blotting or after polymerase chain reaction amplification. Our data demonstrate that 46,XX true hermaphroditism is a genetically heterogeneous condition, some subjects having TDF sequences but most not. The 46,XX subjects without SRY may have a mutation of an autosomal gene that permits testicular determination in the absence of TDF.  相似文献   

15.
Although tardigrades can reproduce only through gametes they have exploited several modes of reproduction, which may be determined by their environment. Marine species (mainly heterotardigrades) are gonochoristic; hermaphroditism is only cited once, and parthenogenesis is unknown. In many cases females mature one egg at a time throughout adult life, whereas males are semelparous. Gonochorism is still present in limno-terrestrial species, while sporadic hermaphroditism occurs in several eutardigrade families. Thelytoky is the most common mode of reproduction in non-marine Tardigrada. Females are iteroparous, laying groups of eggs (free or in the exuvium), while males are semelparous (in a limnic species) or iteroparous with a continuous or cyclical maturation of the spermatozoa (in species from moss and leaf litter). Self-fertilisation appears to characterise hermaphroditic species, found in freshwater, mosses, leaf litter and soil. Egg maturation in these species is similar to that of the gonochoristic species, while spermatozoa mature in appreciable numbers before the oocytes, subsequently maturing continuously but in small numbers over the life of the animal. Parthenogenesis in limno-terrestrial tardigrades always appears continuous. In many species only females occur, but morpho-species populations may be found with both bisexual amphimictic (diploid) and unisexual thelytokous (often but not always polyploid) cytotypes. We can hypothesise that with the evolution of cryptobiosis and passive dispersal unstable and isolated habitats may favour parthenogenesis and self-fertilisation, as both reproductive modes allow colonisation of a new territory by a single individual. Parthenogenesis and hermaphroditism do not occur in the same species, and we can surmise that self-fertilisation will only evolve where parthenogenesis has never occurred.  相似文献   

16.
Summary The authors describe a case of true hermaphroditism of mainly female phenotype, ambiguous external genitalia, and ovotestis. The cytogenetic studies revealed 45X/46XY mosaicism and an absence of Barr bodies.  相似文献   

17.
The diversity of reproductive strategies in nature is shaped by a plethora of factors including energy availability. For example, both low temperatures and limited food availability could increase larval exposure to predation by slowing development, selecting against pelagic and/or feeding larvae. The frequency of hermaphroditism could increase under low food availability as population density (and hence mate availability) decreases. We examine the relationship between reproductive/life-history traits and energy availability for 189 marine gastropod families. Only larval type was related to energy availability with the odds of having planktotrophic larvae versus direct development decreasing by 1% with every one-unit increase in the square root of carbon flux. Simultaneous hermaphroditism also potentially increases with carbon flux, but this effect disappears when accounting for evolutionary relationships among taxa. Our findings are in contrast to some theory and empirical work demonstrating that hermaphroditism should increase and planktotrophic development should decrease with decreasing productivity. Instead, they suggest that some reproductive strategies are too energetically expensive at low food availabilities, or arise only when energy is available, and others serve to capitalize on opportunities for aggregation or increased energy availability.  相似文献   

18.
The evolution of reproductive systems has intrigued evolutionary biologists for well over a century. Recent empirical and theoretical work has elucidated the evolution of dioecy (separate males and females) from hermaphroditism in many plant species. The reverse transition, evolving hermaphroditism from dioecy, has occurred many times in animals, and yet is poorly studied relative to its reverse analog in plants. Crustaceans in the sub-order Spinicaudata have evolved hermaphroditism from dioecy three separate times, in some cases forming all-hermaphroditic species and in others forming androdioecious (males + hermaphrodites) species. Herein we report evidence of hermaphroditism in a fourth spinicaudatan genus: the newly described Calalimnadia. We present sex ratio and anatomical evidence that Calalimnadia mahei comprises selfing hermaphrodites, with no males being found in over 10,000 offspring reared. We combine these reproductive results with those of other Spinicaudata to estimate the evolution of hermaphroditism in this crustacean sub-order. We use these genetic data combined with anatomical evidence to suggest that C. mahei represents a fourth, independent derivation of hermaphroditism from dioecy in these reproductively labile crustaceans.  相似文献   

19.
Disorders of sexual development are rare in non‐human primates. We report a case of true hermaphroditism in a 19‐year‐old, nulliparous, female baboon (Papio spp.). At necropsy, the animal was obese with adequate muscle mass and hydration. Reproductive organs appeared normal with the exception of 2 firm nodular structures in the myometrium (1‐1.5 cm diameter) and a thickened, dark endocervical mucosa. Histologically, both gonads were ovotestes and contained discrete areas of ovarian and testicular tissue. There were follicles in various stages of development surrounded by ovarian stroma. Other areas contained hypoplastic seminiferous tubules lined by Sertoli cells, but lacked germ cells and spermatozoa. The uterine lesions were consistent with adenomyosis and cystic endometrial hyperplasia. Cervical lesions were consistent with atypical glandular hyperplasia and squamous metaplasia with dysplasia. We report the first case of ovotesticular disorder of sexual development (OT‐DSD), or true hermaphroditism in a baboon.  相似文献   

20.
True hermaphroditism in humans usually is associated with a 46,XX karyotype or with mosaicism in which admixtures of cells with an XX and an XY karyotype are seen. However, the mechanisms that cause such mosaicisms are poorly understood. To date, with rare exceptions, analyses of hermaphrodites have been limited mostly to cytogenetic investigations. In this report, we describe a 5-year-old patient with true hermaphroditism and a 46,XX/46,XY karyotype (ratio 38:12) in lymphocytes, suggesting involvement of two fertilization events. Microsatellite DNA polymorphisms distributed throughout the genome were analyzed, to investigate the origin of the cell lines concerned. The results are consistent with double paternal and single maternal genetic contributions. Possible mechanisms that would explain these findings are discussed. The most likely mechanism involves a single haploid ovum dividing parthenogenetically into two haploid ova, followed by double fertilization and fusion of the two zygotes into a single individual, at the early embryonic stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号