首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory scale preparation of bovine serum albumin (BSA) stained with Coomassie brilliant blue (CBB) at alkaline pH is first described. Physical-chemical analyses of CBB-BSA showed that the unprotonated (anion) CBB dye binds tightly to BSA in buffered media of pH 8.2. Characteristic differences in spectra lambda(max) and molar absorptivities were found for the free anion CBB dye versus the CBB-BSA complex. Binding studies with low versus high dye/protein concentration ratios at alkaline pH gave values for n, binding site numbers, and K, intrinsic binding coefficient, consistent with those reported in analytical studies under acidic pH, but higher than values for neutral pH. Comparative analyses of Beer's law plots for the alkaline CBB-BSA complex under different experimental conditions showed its high stability toward various interferences, such as pH, strong detergents, temperature, light, prolonged storage, as well as high affinity for tannins. The hydrophobic nature of the CBB-BSA association at alkaline pH was tested.  相似文献   

2.
Chloride self-exchange across the human erythrocyte membrane at alkaline extracellular pH (pHO) and constant neutral intracellular pH (pH(i)) can be described by an exofacial deprotonatable reciprocating anion binding site model. The conversion of the transport system from the neutral to the alkaline state is related to deprotonation of a positively charged ionic strength- and substrate-sensitive group. In the absence of substrate ions ([ClO] = 0) the group has a pK of approximately 9.4 at constant high ionic strength (equivalent to approximately 150 mM KCl) and a pK of approximately 8.7 at approximately zero ionic strength. The alkaline ping-pong system (examined at constant high ionic strength) demonstrates outward recruitment of the binding sites with an asymmetry factor of approximately 0.2, as compared with the inward recruitment of the transport system at neutral pHO with an asymmetry factor of approximately 10. The intrinsic half-saturation constant for chloride binding, with [Cli] = [Clo], increased from approximately 30 mM at neutral to approximately 110 mM at alkaline pHO. The maximal transport rate was a factor of approximately 1.7 higher at alkaline pHO. This increase explains the stimulation of anion transport, the "modifier hump," observed at alkaline pHO. The translocation of anions at alkaline pHO was inhibited by deprotonation of another substrate-sensitive group with an intrinsic pK of approximately 11.3. This group together with the group with a pK of approximately 9.4 appear to form the essential part of the exofacial anion binding site. The effect of extracellular iodide inhibition on chloride transport as a function of pHO could, moreover, be simulated if three extracellular iodide binding constants were included in the model: namely, a competitive intrinsic iodide binding constant of approximately 1 mM in the neutral state, a self-inhibitor binding constant of approximately 120 mM in the neutral state, and a competitive intrinsic binding constant of approximately 38 mM in the alkaline state.  相似文献   

3.
The charge structure and ionic interactions of elastin prepared from the pig thoracic aorta by acid, alkali, or CNBr extraction have been investigated by potentiometric titration and radiotracer techniques. The number of charged groups was consistent with the amino acid composition, comparable to elastin from other sources and insensitive to the method of preparation. The enthalpies of ionization of the basic groups were comparable for those previously found for proteins but those of the acidic groups were higher. Ionic interactions were predominantly electrostatic although a strong affinity for chloride ions was noted. Changes in ionic interactions as the elastin was stretched had a similar effect to an increase in the apparent fixed charge density of the tissue. Mechanical strain altered the protonation of the elastin and the pK of the carboxyl groups. Conversely, the conformation of the elastin network varied with ionic strength and pH, being particularly sensitive to the degree of ionization of the more basic groups and with the ionic strength and anion composition of the medium. We speculate that strain induced changes in the conformation of elastin altering its reactivity towards lipids, ions or matrix macromolecules or changes in its mechanical properties resulting from changes in its ionic environment may be of physiological or pathological importance.  相似文献   

4.
T Kesvatera  B J?nsson  A Telling  V T?ugu  H Vija  E Thulin  S Linse 《Biochemistry》2001,40(50):15334-15340
The binding of calcium ions by EF-hand proteins depends strongly on the electrostatic interactions between Ca(2+) ions and negatively charged residues of these proteins. We have investigated the pH dependence of the binding of Ca(2+) ions by calbindin D(9k). This protein offers a unique possibility for interpretation of such data since the pK(a) values of all ionizable groups are known. The binding is independent of pH between 7 and 9, where maximum calcium affinity is observed. An abrupt decrease in the binding affinity is observed at pH values below 7. This decrease is due to protonation of acidic groups, leading to modification of protein charges. The pH dependence of the product of the two macroscopic Ca(2+)-binding constants can be formally described by the involvement of two acidic groups with pK(a) = 6.6. Monte Carlo calculations show that the reduction of Ca(2+) binding is strictly determined by variable electrostatic interactions due to pH-dependent changes not only in the binding sites, but also of the overall charge of the protein.  相似文献   

5.
Activation of angiotensin converting enzyme by monovalent anions   总被引:4,自引:0,他引:4  
The angiotensin converting enzyme catalyzed hydrolysis of furanacryloyl-Phe-Gly-Gly is activated by monovalent anions in the order C1- greater than Br- greater than F- greater than NO3- greater than CH3COO-. In the alkaline pH region, increasing anion concentrations decrease the KM but do not change the kcat. This behavior is characteristic of an ordered bireactant mechanism in which the anion binds to the enzyme prior to the substrate. At acidic pH values, however, the anion activation is a result of both a decrease in KM and an increase in kcat, implying a bireactant mechanism in which anion and substrate bind randomly. For both the ordered and the bireactant mechanisms the anion serves as an essential activator. The effect of chloride on enzyme activity was studied over the pH range 5-10 under kcat/KM conditions and demonstrates that the apparent chloride binding constant increases from 3.3 mM at pH 6.0 to 190 mM at pH 9.0. The kcat vs. pH profile exhibits two pK values of 5.6 and 9.6, while the variation of KM with pH is characterized by a pK of 8.9 and a 2-fold increase between pH 6.5 and 7.5. The chloride activation of the hydrolysis of furanacryloyl-Phe-Gly-Gly is compared with that of the physiological substrates angiotensin I and bradykinin.  相似文献   

6.
Protein solubility in aqueous solutions depends in a complicated and not well understood way on pH, salt type, and salt concentration. Why for instance does the use of two different monovalent salts, potassium thiocyanate and potassium chloride, produce such different results? One important and previously neglected source of ion specificity is the ionic dispersion potential that acts between each ion and the protein. This attractive potential is found to be much stronger for SCN(-) than it is for Cl(-). We present model calculations, performed within a modified ion-specific double-layer theory, that demonstrate the large effect of including these ionic dispersion potentials. The results are consistent with experiments performed on hen egg-white lysozymes and on neutral black lipid membranes. The calculated surface pH and net lysozyme charge depend strongly on the choice of anion. We demonstrate that the lysozyme net charge is larger, and the corresponding Debye length shorter, in a thiocyanate salt solution than in a chloride salt solution. Recent experiments have suggested that pK(a) values of histidines depend on salt concentration and on ionic species. We finally demonstrate that once ionic dispersion potentials are included in the theory these results can quantitatively be reinterpreted in terms of a highly specific surface pH (and a salt-independent pK(a)).  相似文献   

7.
The intrinsically unfolded protein α-synuclein has an N-terminal domain with seven imperfect KTKEGV sequence repeats and a C-terminal domain with a large proportion of acidic residues. We characterized pK(a) values for all 26 sites in the protein that ionize below pH 7 using 2D (1) H-(15) N HSQC and 3D C(CO)NH NMR experiments. The N-terminal domain shows systematically lowered pK(a) values, suggesting weak electrostatic interactions between acidic and basic residues in the KTKEGV repeats. By contrast, the C-terminal domain shows elevated pK(a) values due to electrostatic repulsion between like charges. The effects are smaller but persist at physiological salt concentrations. For α-synuclein in the membrane-like environment of sodium dodecylsulfate (SDS) micelles, we characterized the pK(a) of His50, a residue of particular interest since it is flanked within one turn of the α-helix structure by the Parkinson's disease-linked mutants E46K and A53T. The pK(a) of His50 is raised by 1.4 pH units in the micelle-bound state. Titrations of His50 in the micelle-bound states of the E46K and A53T mutants show that the pK(a) shift is primarily due to interactions between the histidine and the sulfate groups of SDS, with electrostatic interactions between His50 and Glu46 playing a much smaller role. Our results indicate that the pK(a) values of uncomplexed α-synuclein differ significantly from random coil model peptides even though the protein is intrinsically unfolded. Due to the long-range nature of electrostatic interactions, charged residues in the α-synuclein sequence may help nucleate the folding of the protein into an α-helical structure and confer protection from misfolding.  相似文献   

8.
The ionization behavior of retinoic acid (RA) in an aqueous phase and when bound to bovine serum albumin was studied. Titrations of RA in the various phases were followed by monitoring the red shift in the absorption maximum of RA that occurred upon deprotonation. The apparent pK of RA was dependent on the concentration of this compound. At the concentration range 6-20 microM, the pK of RA in water had a value of approximately 8.0. As the concentration was decreased in the range 1-6 microM, the value of the pK decreased continuously. The lowest pK observed was approximately 6.0. It was concluded that RA in an aqueous phase at concentrations in the microM range, forms micelles, and that the values of the pK of RA monomers and micelles in water are less than 6.0 and 8.0, respectively. The presence of 0.15 M NaCl caused a decrease in the pK of RA micelles and lowered the value of the CMC. Titration of RA in the presence of bovine serum albumin revealed the presence of a heterogeneous population comprised of three distinct microenvironments for RA associated with this protein. Two populations of RA were found to undergo complete titration in the pH range 4-8. A third population became apparent at pH greater than 9.5.  相似文献   

9.
Zhang T  Liu H  Chen J 《Biotechnology progress》1999,15(6):1078-1082
Affinity Cibacron Blue 3GA (CB) dye in aqueous phase was directly transferred to the reversed micelles due to electrostatic interaction between anionic CB and cationic cetyltrimethylammonium bromide (CTAB). The bovine serum albumin (BSA) transfer to the reverse micelles increases significantly in a wide range of pH by the addition of a small amount of CB ( approximately 1.0-7.0% of the total surfactant concentration) to the aqueous phase. For pH < pI, the selectivity can be significantly improved with the presence of affinity CB because no BSA was extracted in the absence of CB. For backward extraction of BSA from the micellar phase with stripping aqueous solution, the addition of 2-propanol to the aqueous phase can recover almost all BSA (98.5%) extracted into the reverse micelles.  相似文献   

10.
LeVine H 《Biochemistry》2005,44(48):15937-15943
K114, (trans,trans)-1-bromo-2,5-bis(4-hydroxystyryl)benzene, is a fluorescent Congo Red analogue that binds tightly to amyloid fibrils, but not the monomeric proteins, with a concomitant enhancement in fluorescence. The mechanism for the low aqueous fluorescence and the subsequent enhancement by A beta(1-40) fibrils was investigated by fluorescence spectroscopy and binding analysis. K114's unusually low buffer fluorescence is due to self-quenching in sedimentable aggregates or micelles which upon interacting with amyloid fibrils undergo an enhancement in fluorescence intensity and shifts in the excitation and emission spectra. These spectral changes are suggestive of a stabilization of the phenolate anion, perhaps by hydrogen bonding, rather than an increase in the microenvironment dielectric constant or dye immobilization. 1,4-Bis(4-aminophenylethenyl)-2-methoxybenzene, which lacks the phenol moiety, and X-34, which contains a stabilized phenol (pK approximately 13.4), do not display the phenolate anion fluorescence in the presence of fibrils. The apparent affinity of K114 for fibril binding is 20-30 nM with a stoichiometry of 2.2 mol of K114/mol of A beta(1-40) monomer. Competition studies indicate that K114 and Congo Red share a site, but K114 does not bind to sites on A beta(1-40) fibrils for neutral benzothiazole (BTA-1), cationic thioflavin T, or the hydrophobic (S)-naproxen and (R)-ibuprofen molecules. Comparison of benzothiazole binding stoichiometry which has been suggested to reflect disease-relevant amyloid structures to that of Congo Red analogues which reflect total fibril content may be useful in defining biologically pertinent conformational forms of amyloid.  相似文献   

11.
Biological functions for a large class of calmodulin-related proteins, such as target protein activation and Ca(2+) buffering, are based on fine-tuned binding and release of Ca(2+) ions by pairs of coupled EF-hand metal binding sites. These are abundantly filled with acidic residues of so far unknown ionization characteristics, but assumed to be essential for protein function in their ionized forms. Here we describe the measurement and modeling of pK(a) values for all aspartic and glutamic acid residues in apo calbindin D(9k), a representative of calmodulin-related proteins. We point out that while all the acidic residues are ionized predominantly at neutral pH, the onset of proton uptake by Ca(2+) ligands with high pK(a) under these conditions may have functional implications. We also show that the negative electrostatic potential is focused at the bidental Ca(2+) ligand of each site, and that the potential is significantly more negative at the N-terminal binding site.  相似文献   

12.
NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to obtain site-specific acid dissociation constants (pK (A) values) is challenging. In order to analyze the biphasic titrations exhibited by the side chain (13)C(γ) nuclei of the nucleophilic Glu78 and general acid/base Glu172 in Bacillus circulans xylanase, we have revisited the formalism for the ionization equilibria of two coupled acidic residues. In general, fitting NMR-monitored pH titration curves for such a system will only yield the two macroscopic pK (A) values that reflect the combined effects of both deprotonation reactions. However, through the use of mutations complemented with ionic strength-dependent measurements, we are able to extract the four microscopic pK (Ai) values governing the branched acid/base equilibria of Glu78 and Glu172 in BcX. These data, confirmed through theoretical calculations, help explain the pH-dependent mechanism of this model GH11 xylanase by demonstrating that the kinetically determined pK (A) values and hence catalytic roles of these two residues result from their electrostatic coupling.  相似文献   

13.
In order to investigate effects of temperature in the physiological range (from 10 to 50 degrees C) on structural, physical and functional properties of the N-form of human serum albumin (HSA), the temperature dependences of fluorescence parameters of Trp-214 residue of HSA and of the specifically bound dye ANS, as well as of association constants of ANS binding in the primary and secondary binding sites on HSA molecule were measured. The temperature-induced changes of these properties of HSA are essentially dependent on pH (7.0 or 5,6) and ionic strength (0.001-0.008 or 0.2 M NaCl). At pH 7.0 and 0.2 M NaCl the environment of Trp-214 remained invariant at temperature changes between 10 and 50 degrees C. On the other hand, the affinity to ANS of a primary binding site doubled and that of secondary ones halved. These affinity changes seem to be due, are least partly, to the heating-induced dissociation of Cl-ions, which are inhibitors of the primary dye binding. By lowering pH (to 5.6) and ionic strength the temperature-induced changes in the Trp-214 environment were observed. The changes are interpreted as indole group transition into the buried region, inaccesible to water (the "closing" of a structural slit). The affinity of secondary binding sites of ANS was halved.  相似文献   

14.
Both the sialoglycoprotein of human erythrocyte membranes, glycophorin, and the sialic acid free protein, obtained by treatment of glycophorin with neuraminidase (EC 3.2.1.18), increase the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS). Binding of ANS to glycophorin is weak compared with the binding to bovine serum albumin (BSA). equilibrium dialysis gives an apparent binding constant of about 4 X 10(3) M(-1) at neutral pH, but Ka increases 1.75 times when NaCl or CaCl2 are added and 10-fold when the pH is lowered to 3.0. Sialic acid groups do not significantly affect ANS binding, although they have some effect at low ionic strength and neutral pH. Fluorescence studies indicate only one to two binding sites for ANS, with apparent pK = 3.8 +/- 0.2, and located close to aromatic residues in glycophorin. Polarization and quantum efficiency of the fluorescence of ANS associated with glycophorin fail to indicate changes in the vicinity of the binding site when the pH is lowered.  相似文献   

15.
Several studies have shown that divalent anion binding to ribonuclease A (RNase A) contributes to RNase A folding and stability. However, there are conflicting reports about whether chloride binds to or stabilizes RNase A. Two broad-zone experimental approaches, membrane-confined electrophoresis and analytical ultracentrifugation, were used to examine the electrostatic and electrohydrodynamic characteristics of aqueous solutions of bovine RNase A in the presence of 100 mM KCl and 10 mM Bis-Tris propane over a pH range of 6.00-8.00. The results of data analysis using a Debye-Huckel-Henry model, compared with expectations based on pK(A) values, are consistent with the binding of two chlorides by RNase A. The decreased protein valence resulting from anion binding contributes 2-3 kJ/mol to protein stabilization. This work demonstrates the utility of first-principle valence determinations to detect protein solution properties that might otherwise remain undetected.  相似文献   

16.
Hyaluronan-binding protein 1 (HABP1)/p32/gC1qR was characterized as a highly acidic and oligomeric protein, which binds to different ligands like hyaluronan, C1q, and mannosylated albumin. It exists as trimer in high ionic and reducing conditions as shown by crystal structure. In the present study, we have examined the structural changes of HABP1 under a wide range of ionic environments. HABP1 exhibits structural plasticity, which is influenced by the ionic environment under in vitro conditions near physiological pH. At low ionic strength HABP1 exists in a highly expanded and loosely held trimeric structure, similar to that of the molten globule-like state, whereas the presence of salt stabilizes the trimeric structure in a more compact fashion. It is likely that the combination of the high net charge asymmetrically distributed along the faces of the molecule and the relatively low intrinsic hydrophobicity of HABP1 result in its expanded structure at neutral pH. Thus, the addition of counter ions in the molecular environment minimizes the intramolecular electrostatic repulsion in HABP1 leading to its stable and compact conformations, which reflect in its differential binding toward different ligands. Whereas the binding of HABP1 toward HA is enhanced on increasing the ionic strength, no significant effect was observed with the two other ligands, C1q and mannosylated albumin. Thus, although HA interacts only with compact HABP1, C1q and mannosylated albumin can bind to loosely held oligomeric HABP1 as well. In other words, structural changes in HABP1 mediated by changes in the ionic environment are responsible for recognizing different ligands.  相似文献   

17.
The binding of the vasodilator drug papaverine (PAV) to micelles of zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS), cationic cetyltrimethylammonium chloride (CTAC) and anionic sodium dodecylsulfate (SDS) in aqueous solution was studied by 1H NMR and electronic absorption spectroscopy. In the presence of HPS or CTAC, the apparent pK(a) of PAV decreased by about 2 units, while it increased by about 2 units upon binding to SDS. However, the chemical shift patterns of both protonated (PAVH+) and deprotonated (PAV0) forms of PAV are not sensitive to the type of surfactant. The association constants were estimated as 5 +/- 2 M(-1) for PAVH+-CTAC, 8 +/- 3 M(-1) for PAVH+-HPS, (7 +/- 2) x 10(5) M(-1) for PAVH+-SDS, and 1.5 x 10(3) to 3.0 x 10(3) M(-1) for the complexes of PAV0 with all three types of micelles. Using these data, an electrostatic potential difference on the micelle-water interface was calculated as 150 +/- 10 mV for CTAC, 140 +/- 10 mV for HPS and - 140 +/- 10 mV for SDS. The results suggest that PAV aromatic rings are located in the hydrophobic part of the micelle. The electrostatic attraction or repulsion of the protonated quinoline nitrogen and surfactant headgroups changes the affinity of PAV to micelles and, thus, shifts the ionization equilibrium of PAV. The electrostatic potential of HPS micellar surface is determined by the cationic dimethylammonium headgroup fragment, whereas the anionic sulfate fragment attenuates the effective charge of HPS headgroup.  相似文献   

18.
Koide A  Jordan MR  Horner SR  Batori V  Koide S 《Biochemistry》2001,40(34):10326-10333
It is generally considered that electrostatic interactions on the protein surface, such as ion pairs, contribute little to protein stability, although they may play important roles in conformational specificity. We found that the tenth fibronectin type III domain of human fibronectin (FNfn10) is more stable at acidic pH than neutral pH, with an apparent midpoint of transition near pH 4. Determination of pK(a)'s for all the side chain carboxyl groups of Asp and Glu residues revealed that Asp 23 and Glu 9 have an upshifted pK(a). These residues and Asp 7 form a negatively charged patch on the surface of FNfn10, with Asp 7 centrally located between Asp 23 and Glu 9, suggesting repulsive electrostatic interactions among these residues at neutral pH. Mutant proteins, D7N and D7K, in which Asp 7 was replaced with Asn and Lys, respectively, exhibited a modest but significant increase in stability at neutral pH, compared to the wild type, and they no longer showed pH dependence of stability. The pK(a)'s of Asp 23 and Glu 9 in these mutant proteins shifted closer to their respective unperturbed values, indicating that the unfavorable electrostatic interactions have been reduced in the mutant proteins. Interestingly, the wild-type and mutant proteins were all stabilized to a similar degree by the addition of 1 M sodium chloride at both neutral and acidic pH, suggesting that the repulsive interactions between the carboxyl groups cannot be effectively shielded by 1 M sodium chloride. These results indicate that repulsive interactions between like charges on the protein surface can destabilize a protein, and protein stability can be significantly improved by relieving these interactions.  相似文献   

19.
Clostridium perfringens sialidase was purified by affinity chromatography. Kinetic properties of the enzyme were examined with sialyllactose and with mixed sialoglycolipids (gangliosides) as substrates. With the latter substrate in 0.01 M Tris-acete in the absence of strong electrolyte, the pH optimum for enzymatic activity was 6.8. Addition of strong electrolyte (0.01 to 0.10 M Nac1) to the reaction medium caused an acidic shift and a broadening of the pH optimum, Enzymatic activity at pH 5.8 rose approximately 2.5-fold; a concomitant loss of activity at pH 6.8 was also observed. The alteration of enzymatic activity caused by strong electrolyte were dependent upon changes in Vmax. Km remained nearly invariant. Thus, a reversible transition of the enzyme from a relatively inactive to a highly active form occurred as a function of strong electrolyte concentration. Determination of the pK values of the active functional groups of C. perfringens sialidase revealed that the effects of strong electrolyte were exerted upon the pKa group of the enzyme. Strong electrolyte appeared to shield unfavorable electrostatic interactions between polyanionic sialoglycolipid micelles and the enzyme molecule, thus protecting the pKa group from inactivation. In comparision with the effects of strong electrolyte upon enzymatic activity toward the sialoglycolipid substrate, those observed with the monovalent substrate, sialyllacthose, were minor. Collectively, these findings indicate that ionic environment may effectively control the activity and relative substrate specificity of C. perfringens sialidase at a given pH. Furthermore, they explain the low pH optima and skewed pH profiles previously reported for enzymatic activity toward high molecular weight substrates.  相似文献   

20.
Effects of ph and ionic strength on phosphatidylserine/phosphatidylcholine mixed membranes prepared on Millipore filter pore surfaces have been studied using spin-labeled phosphatidylcholine. Lowering pH at constant ionic strength and lowering ionic strength at constant pH caused a lateral reorganization of the membrane. The trigger was protonation of the serine carboxyl group which caused solidification of phosphatidylserine molecules in the membrane, leaving a fluid phase consisting mainly of phosphatidylcholine. The appearent pK for the proton-induced phase separation was measured in a wide range of salt concentrations. The ionic strength dependence was satisfactorily explained based on the electrostatic free energy of proton in the field of membrane surface potential. The Gouy-Chapman theory gave a good approximation for the surface potential. The surface pK of phosphatidylserine and phosphatidic acid vesicles was directly measured in various salt concentrations by 31P-NMR and the results confirmed validity of the Gouy-Chapman-type analysis. The lateral reorganization was triggered by electrostatic interaction but the bulk of the stabilization energy for the structural changes would be the gains in intermolecular van der Waals energy due to closer packing of phosphatidylserine on solidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号