共查询到20条相似文献,搜索用时 11 毫秒
1.
Colorectal cancer represents 8.5% of all tumours at the King Faisal Specialist Hospital & Research Centre. Environmental and dietary carcinogens such as polycyclic aromatic hydrocarbons (PAHs) and heterocyclic amines (HCAs) have long been suspected to play a prominent role in colon cancer aetiology. We designed a case–control study to test the hypothesis of whether or not the presence of DNA adducts can play a role in the aetiology of colon cancer. DNA adducts were measured in 24 cancerous and 20 non-cancerous tissue samples of newly diagnosed colon cancer patients by 32P-post-labelling technique. Normal tissue from 19 hospital patients served as controls. The mean levels of adducts per 10 10 nucleotides in cancerous and non-cancerous tissue were 151.75±217.27 and 114.81±186.10, respectively; however, only adducts in cancerous tissue were significantly higher than controls (32.78±57.51 per 10 10 nucleotides) with p-values of 0.017. No BPDE-DNA adducts were found. No relationship was found between urinary cotinine as a marker of tobacco smoke and 1-hydroxypyrene as an indicator of an individual's internal dose of PAHs and DNA adducts. In a logistic regression model, only adducts in cancerous tissue were associated with the subsequent risk of colon cancer, with an odds ratio of 3.587 (95% confidence interval 0.833–15.448) after adjustment for age and the duration of living in the current region, but of a borderline significance ( p=0.086). Although it is difficult to arrive at a definite conclusion from a small dataset, our preliminary results suggest the potential role of DNA adducts in the colon carcinogenesis process. Additional studies with larger sample sizes are needed to confirm our preliminary finding. It is also important to identify the structural characterization of these unknown DNA adducts in order to have a better understanding of whether or not environmental carcinogens play a role in the aetiology of colon cancer. 相似文献
2.
The methodology applied for DNA adducts in humans has become more reliable in recent years, allowing to detect even background carcinogenic adduct levels in environmentally exposed persons. Particularly, combinations of the various methods now allow the elucidation of specific adduct structures with detection limits of 1 adduct in 10 8 unmodified nucleotides or even lower. The quantification of polycyclic aromatic hydrocarbon-DNA (PAH-DNA) adducts in human tissues and cells has been achieved with a number of highly sensitive techniques: immunoassays and immunocytochemistry using polyclonal or monoclonal antisera specific for DNA adducts or modified DNA, the 32P-postlabelling assay, and adduct identification using physicochemical instrumentation. The results summarized in this review show that PAH-DNA adducts have been detected in a variety of human tissues, including target organs of PAH- and tobacco-associated cancers. Although dosimetry has not always been precise, a large number of data now clearly show that lowering exposure to carcinogenic PAH results in decreasing PAH-DNA adduct levels. In most studies, however, bulk DNA of a certain tissue or cell type has been examined, and there were relatively few studies in which mutations as a consequence of DNA damage at specific genes have been investigated. Promising as these biomarker studies seem for epidemiology and health surveillance, future biomonitoring and molecular epidemiological studies should be directed to combine several endpoint measurements: i.e., adduct formation (preferably at specific sites), mutational spectra in cancer-relevant genes, and genetic markers of (cancer) susceptibility in a number of cancer-predisposing genes. 相似文献
3.
The levels of DNA adducts in the hepatic tissue of the white sucker fish species Catostomus commersoni were determined by 32P-postlabelling. The fish were caught at four sites: two sites near the city of Windsor (Québec, Canada) on the St. François River, a downstream tributary of the St. Lawrence River, and two sites in the St. Lawrence River itself, near the city of Montréal (Québec, Canada). The latter sites are known to be contaminated by many pollutants including polycyclic aromatic hydrocarbons. Total adduct levels in all fish ranged from 25.1–178.0 adducts per 10 9 nucleotides. White sucker from the selected sites of the St. Lawrence River had a significantly higher mean level of DNA adducts than those of the St. François River (129.4 vs 56.8, respectively). These results suggest that the effluents of many heavy industries (e.g. from a Soderberg aluminium plant) flowing in the St. Lawrence River are more likely to produce genotoxic damage to fish than those released in one of its tributary, and mainly associated to the activities of a small town and a nearby pulp and paper mill. 相似文献
4.
Epidemiologic studies indicate that prolonged exposure to particulate air pollution may be associated with increased risk of cardiovascular diseases and cancer in general population. These effects may be attributable to polycyclic aromatic hydrocarbons (PAHs) adsorbed to respirable air particles. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to PAH exposure. This study investigates relationships between exposure to PAHs, polymorphisms of these genes and DNA adducts in group of occupationally exposed policemen (EXP, N = 53, males, aged 22–50 years) working outdoors in the downtown area of Prague and in matched “unexposed” controls (CON, N = 52). Personal exposure to eight carcinogenic PAHs (c-PAHs) was evaluated by personal samplers during working shift prior to collection of biological samples. Bulky-aromatic DNA adducts were analyzed in lymphocytes by 32P-postlabeling assay. Polymorphisms of metabolizing (GSTM1, GSTP1, GSTT1, EPHX1, CYP1A1-MspI) and DNA repair (XRCC1, XPD) genes were determined by PCR-based RFLP assays. As potential modifiers and/or cofounders, urinary cotinine levels were analyzed by radioimmunoassay, plasma levels of vitamins A, C, E and folates by HPLC, cholesterol and triglycerides using commercial kits. During the sampling period ambient particulate air pollution was as follows: PM10 32–55 μg/m 3, PM2.5 27–38 μg/m 3, c-PAHs 18–22 ng/m 3; personal exposure to c-PAHs: 9.7 ng/m 3 versus 5.8 ng/m 3 ( P < 0.01) for EXP and CON groups, respectively. The total DNA adduct levels did not significantly differ between EXP and CON groups (0.92 ± 0.28 adducts/10 8 nucleotides versus 0.82 ± 0.23 adducts/10 8 nucleotides, P = 0.065), whereas the level of the B[ a]P-“like” adduct was significantly higher in exposed group (0.122 ± 0.036 adducts/10 8 nucleotides versus 0.099 ± 0.035 adducts/10 8 nucleotides, P = 0.003). A significant difference in both the total ( P < 0.05) and the B[ a]P-“like” DNA adducts ( P < 0.01) between smokers and nonsmokers within both groups was observed. A significant positive association between DNA adduct and cotinine levels ( r = 0.368, P < 0.001) and negative association between DNA adduct and vitamin C levels ( r = −0.290, P = 0.004) was found. The results of multivariate regression analysis showed smoking, vitamin C, polymorphisms of XPD repair gene in exon 23 and GSTM1 gene as significant predictors for total DNA adduct levels. Exposure to ambient air pollution, smoking, and polymorphisms of XPD repair gene in exon 6 were significant predictors for B[ a]P-“like” DNA adduct. To sum up, this study suggests that polymorphisms of DNA repair genes involved in nucleotide excision repair may modify aromatic DNA adduct levels and may be useful biomarkers to identify individuals susceptible to DNA damage resulting from c-PAHs exposure. 相似文献
5.
The function of the human nucleotide excision repair (NER) apparatus is to remove bulky adducts from damaged DNA. In an effort to gain insights into the molecular mechanisms involved in the recognition and excision of bulky lesions, we investigated a series of site specifically modified oligonucleotides containing single, well-defined polycyclic aromatic hydrocarbon (PAH) diol epoxide-adenine adducts. Covalent adducts derived from the bay region PAH, benzo[a]pyrene, are removed by human NER enzymes in vitro. In contrast, the stereochemically analogous N(6)-dA adducts derived from the topologically different fjord region PAH, benzo[c]phenanthrene, are resistant to repair. The evasion of DNA repair may play a role in the observed higher tumorigenicity of the fjord region PAH diol epoxides. We are elucidating the structural and thermodynamic features of these adducts that may underlie their marked distinction in biologic function, employing high-resolution nuclear magnetic resonance studies, measurements of thermal stabilities of the PAH diol epoxide-modified oligonucleotide duplexes, and molecular dynamics simulations with free energy calculations. Our combined findings suggest that differences in the thermodynamic properties and thermal stabilities are associated with differences in distortions to the DNA induced by the lesions. These structural effects correlate with the differential NER susceptibilities and stem from the intrinsically distinct shapes of the fjord and bay region PAH diol epoxide-N(6)-adenine adducts. 相似文献
6.
Individual variations in activity of pulmonary enzymes that metabolize tobacco-derived carcinogens may affect an individual's cancer risk from cigarette smoking. To investigate whether some of these enzymes (e.g., cytochrome P450IA-related) can serve as markers for carcinogen-induced DNA damage accumulating in the lungs of smokers, non-tumorous lung tissue specimens were taken during surgery from middle-aged men with either lung cancer ( n = 54) or non-neoplastic lung disease ( n = 20). Phase I (AHH, ECDE) and phase II (EH, UDPGT, GST) enzyme activities, glutathione and malondialdehyde contents were determined in lung parenchyma and/or bronchial tissues; some samples were analyzed for DNA adducts, using 32P-postlabeling. Data analysis of subsets or the whole group of patients yielded the following results. (1) Phase I and II drug-metabolizing enzyme (AHH, EH, UDPGT, GST) activities in histologically normal surgical specimens of lung parenchyma were correlated with the respective enzyme activities in bronchial tissues of the same subject. (2) In lung parenchyma, enzyme (AHH, ECDE, EH, UDPGT) activities were significantly and positively related to each other, implying a similar regulatory control of their expression. (3) Mean activities of pulmonary enzymes (AHH, ECDE) were significantly (2- and 7-fold, respectively) higher in lung cancer patients who had smoked within 30 days before surgery (except GST, which was depressed) than in cancer-free subjects with a similar smoking history. (4) In the cancer patients, the time required for AHH, EH and UDPGT activities to return to the level found in non-smoking subjects was several weeks. (5) Bronchial tree and peripheral lung parenchyma preparations exhibited a poor efficiency in activating promutagens to bacterial mutagens in Salmonella. However, they decreased the mutagenicity of several direct-acting mutagens, an effect which was more pronounced in tissue from recent smokers. GSH concentration and GST activity were positively correlated with mutagen inactivation in the same sample. (6) In recent smokers, AHH activity in lung parenchyma was positively correlated with the level of tobacco smoke-derived DNA adducts. (7) Pulmonary AHH and EH activity had prognostic value in tobacco-related lung cancer patients. (8) An enhanced level of pro-oxidant state in the lungs was associated with recent cigarette smoking. Malondialdehyde level in lung parenchyma was associated with the degree of small airway obstruction, suggesting a common free radical-mediated pathway for both lung cancer induction and small airway obstruction. These results demonstrate the pronounced effect of recent cigarette smoke exposure on pulmonary xenobiotic metabolism and lipid peroxidation and lend further support to the hypothesis that the inducibility of pulmonary AHH activity (cytochrome P450IA1 levels) in tobacco smokers is associated with lung cancer risk. Results on DNA adducts in smokers' lung tissue may help to explain why a certain metabolic phenotype accumulates more DNA damage in lung cells. 相似文献
7.
The detection of DNA adducts is an important component in assessing the mutagenic potential of exogenous and endogenous compounds. Here, we report an in vitro quantitative long PCR (XL-PCR) assay to measure DNA adducts in human genomic DNA based on their ability to block and inhibit PCR amplification. Human genomic DNA was exposed to test compounds and then a target sequence was amplified by XL-PCR. The amplified sequence was then quantified using fluorogenic 5′ nuclease PCR (TaqMan ®) and normalized to a solvent-treated control. The extent of DNA adduction was determined based on the reduction in amplification of the target sequence in the treated sample. A 17.7 kb β- globin fragment was chosen as the target sequence for these studies, since preliminary experiments revealed a two-fold increased sensitivity of this target compared to a 10.4 kb HPRT fragment for detecting hydrogen peroxide-induced DNA damage. Validation of the XL-PCR assay with various compounds demonstrated the versatility of the assay for detecting a wide range of adducts formed by direct acting or S9-activated mutagens. The same DNA samples were also analyzed using 32P-postlabeling techniques (thin-layer chromatography or high-performance liquid chromatography) to confirm the presence of DNA adducts and estimate their levels. Whereas 32P-postlabeling with nuclease P 1 enrichment was more sensitive for detecting bulky adducts induced by the compounds benzo[ a]pyrene, dimethylbenzanthracene, 3-methylindole, indole 3-carbinol, or 2-acetylaminofluorene, the XL-PCR procedure was more sensitive for detecting smaller or labile DNA adducts formed by the compounds methyl methanesulfonate, diethyl nitrosamine, ethylnitrosourea, diepoxybutane, ICR-191, styrene oxide, or aflatoxin B 1. Compounds not expected to form adducts in DNA, such as clofibrate, phenobarbital, chloroform or acetone, did not produce a positive response in the XL-PCR assay. Thus, quantitative XL-PCR provides a rapid, high-throughput assay for detecting DNA damage that complements the existing 32P-postlabeling assay with nuclease P 1 enrichment. 相似文献
8.
Several studies have identified tobacco smoking as a risk factor for anal cancer in both women and men. Samples of anal epithelium from haemorrhoidectomy specimens from current smokers ( n=20) and age-matched life-long non-smokers ( n=16) were analysed for DNA adducts by the nuclease P 1 digestion enhancement procedure of 32P-postlabelling analysis. The study included 14 men and 22 women. Both qualitative and quantitative differences in the adduct profiles were observed between the smokers and non-smokers. The mean adduct level was significantly higher in the smokers than in the non-smokers (1.88±0.71 (S.D.) versus 1.36±0.60 adducts per 10 8 nucleotides, P=0.02, two-tailed unpaired t-test with Welch’s correction); furthermore, the adduct pattern seen in two-dimensional chromatograms revealed the smoking-related diagonal radioactive zone in 17/20 smokers, but not in any of the non-smokers ( P<0.00001, Fisher’s exact test). These results indicate that components of tobacco smoke inflict genotoxic damage in the anal epithelium of smokers and provide a plausible mechanism for a causal association between smoking and anal cancer. 相似文献
9.
Data from the EXPAH project on PAH exposure and intermediary biomarkers were analyzed with respect to individual genotypes at seven metabolic gene loci. The GSTM1 null allele was associated with significantly higher levels of two biomarkers, malondialdehyde-2′-deoxyguanosine and benzo[ a]pyrene DNA adducts in the total population from three Central and Eastern European countries. The CYP1B1 Leu/Val variant demonstrated effects on both markers of oxidative DNA damage in opposite directions, producing a higher level of M 1dG with a trend from wild type (Leu/Leu) to heterozygotes to homozygous (Val/Val) variants, whereas the effects of these variants were reversed for 8-oxodG. Cluster Analysis was used to group composite genotypes in order to determine if combined genotypes of multiple loci could explain some of the variation seen with the biomarkers, expressed per unit of exposure, referred to as a sensitivity index. This analysis revealed two closely related genotypes each involving four of the loci (GSTM1*0/*0, CYP1A1*1*1, CYP1B1*1/*2, GSTP1*1/*1 and GSTT1*0/*0, CYP1A1*1*1, CYP1B1*1/*2, GSTP1*1/*1.) that conferred significant resistance to the DNA damaging effects of benzo[ a]pyrene, measured as the level of a benzo[ a]pyrene-like adduct per unit of benzo[ a]pyrene exposed. 相似文献
11.
AbstractPurpose: Examine the association between bulky DNA adduct levels in colon mucosa and colorectal adenoma prevalence, and explore the correlation between adduct levels in leukocytes and colon tissue. Methods: Bulky DNA adduct levels were measured using 32P-postlabelling in biopsies of normal-appearing colon tissue and blood donated by 202 patients. Multivariable logistic regression was used to examine associations between DNA adducts, and interactions of DNA adduct-DNA repair polymorphisms, with the prevalence of colorectal adenomas. Correlation between blood and tissue levels of DNA adducts was evaluated using Spearman’s correlation coefficient. Results: An interaction between bulky DNA adduct levels and XPA rs1800975 on prevalence of colorectal adenoma was observed. Among individuals with lower DNA repair activity, increased DNA adduct levels were associated with increased colorectal adenoma prevalence (OR?=?1.41 per SD increase, 95%CI: 0.92–2.18). Conversely, among individuals with normal DNA activity, an inverse association was observed (OR?=?0.60 per SD increase, 95%CI: 0.34–1.07). Blood and colon DNA adduct levels were inversely correlated ( ρ?=??0.20). Conclusions: Among genetically susceptible individuals, higher bulky DNA adducts in the colon was associated with the prevalence of colorectal adenomas. The inverse correlation between blood and colon tissue measures demonstrates the importance of quantifying biomarkers in target tissues. 相似文献
12.
The aim was to assess the reliability of bulky DNA adducts measurement by means of the 32P-post-labelling assay. The research design consisted of an intramethod reliability study. Buffy coats from 41 subjects were used to obtain two aliquots of 1–5 μg DNA for each subject; bulky DNA adducts were measured using the nuclease P1 32P-post-labelling technique. The reliability of the measurement was assessed by means of the intraclass correlation coefficient (ICC), the distribution of the differences between the two measurements and the limits of agreement. The estimated ICC was 0.977, with a 95% confidence interval between 0.921 and 0.977. The limits of agreement were ±0.44 (DNA adducts per 10 8 nucleotides). Only three subjects had differences lying out of such limits. Bulky DNA adduct levels measured by the 32P-post-labelling technique showed good reliability. Only one measurement is needed to use DNA adducts as a biomarker of exposure and, possibly, cancer risk. Besides, as a validation analysis, 32P-post-labelling measurements can be repeated in only 20–30% of samples. 相似文献
13.
AbstractThe present study was conducted in a Chinese population to evaluate the usefulness and sensitivity of PAH-DNA adduct as a biomarker of PAH exposure, and to examine the potential effects of smoking and polymorphisms of responsive genes on DNA adduct formation induced by PAH exposure. The polymorphisms of genes examined include GSTM1, GSTT1, CYP1A1, microsomal epoxide hydrolase ( mEH) and excision repair cross-complementary group 2 ( ERCC2). A total of 194 subjects with a broad range of PAH exposures were recruited, including 116 occupationally exposed workers, 49 metropolitan residents and 29 suburban gardeners. A significant exposure–response relationship was observed between PAH exposure and DNA adducts in leukocytes across the entire group of subjects ( p<0.0001). The levels of PAH-DNA adducts in the subgroup with lowest occupational exposure to PAHs (<0.1µg BaP m ?3) was significantly higher than that in metropolitan residents and suburban gardeners. However, no significant difference was detected between residents and gardeners, with mean BaP concentrations of 0.028 and 0.011µg m ?3, respectively. The polymorphisms of genes examined failed to show significant effects on PAH-induced adduct formation except ERCC2 Lys751Gln genotypes. A significantly higher level of PAH-DNA adduct was found in subjects with wild-type ERCC2 than those who have either heterozygous or homozygous variant alleles ( p<0.01). Smoking, age and gender did not substantially contribute to PAH-induced DNA adduct formation in this study. The study suggests that PAH-DNA adducts may serve as a reliable biomarker of PAH exposure in occupational settings but may not be sensitive enough to be used in populations with environmental exposures to PAHs. 相似文献
14.
Principal aims of this study were at first, to find a relevant human derived cell line to investigate the genotoxic potential of PAH-containing complex mixtures and second, to use this cell system for the analysis of DNA adduct forming activity of organic compounds bound onto PM10 particles. Particles were collected by high volume air samplers during summer and winter periods in three European cities (Prague, Kosice, and Sofia), representing different levels of air pollution. The genotoxic potential of extractable organic matter (EOM) was compared with the genotoxic potential of individual carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) as well as their artificial mixtures. Metabolically competent human hepatoma HepG2 cells, confluent cultures of human diploid lung fibroblasts (HEL), and the human monocytic leukemia cell line THP-1 were used as models. DNA adducts were analyzed by 32P-postlabeling. The total DNA adduct levels induced in HepG2 cells after exposure to EOMs were higher than in HEL cells treated under the same conditions (15–190 versus 2–15 adducts/10 8 nucleotides, in HepG2 and HEL cells, respectively). THP-1 cells exhibited the lowest DNA adduct forming activity induced by EOMs (1.5–3.7 adducts/10 8 nucleotides). A direct correlation between total DNA adduct levels and c-PAH content in EOM was found for all EOMs in HepG2 cells incubated with 50 μg EOM/ml ( R = 0.88; p = 0.0192). This correlation was even slightly stronger when B[ a]P content in EOMs and B[ a]P-like adduct spots were analyzed ( R = 0.90; p = 0.016). As THP-1 cells possess a limited metabolic capacity for most c-PAHs to form DNA reactive intermediates and are also more susceptible to toxic effects of PAHs and various EOM components, this cell line seemed to be an inappropriate system for genotoxicity studies of PAH-containing complex mixtures. The seasonal variability of genotoxic potential of extracts was stronger than variability among the three localities studied. In HepG2 cells, the highest DNA adduct levels were induced by EOM collected in Prague in the winter period, followed by Sofia and Kosice. However, in the summer sampling period, the order was quite opposite: Kosice > Sofia > Prague. When the EOM content per m 3 of air was taken into consideration in order to compare real exposures of humans to genotoxic compounds in all three localities, extracts from respirable dust particles collected in Sofia exhibited the highest genotoxicity regardless of the sampling period. The results indicate that most of DNA adducts detected in cells incubated with EOMs have their origin in low concentrations of c-PAHs representing 0.03–0.17% of EOM total mass. Finally, our results suggest that HepG2 cells have a metabolic capacity for PAHs similar to human hepatocytes and represent therefore the best in vitro model for investigating the genotoxic potential of complex mixtures containing PAHs among the three cell lines tested in this study. 相似文献
15.
The nonsteroidal antiestrogen tamoxifen increases the risk of endometrial cancer; however, the mechanism for the induction of these tumors is not known. Recently, Sharma et al. [Biochem. Biophys. Res. Commun. 307 (2003) 157], using high performance liquid chromatography (HPLC) with online postcolumn photochemical activation and fluorescence detection, reported the presence of (E)-alpha-(deoxyguanosin- N2-yl)tamoxifen in DNA from human endometrial explants incubated with tamoxifen. Inasmuch as the methodology used by these investigators does not allow unambiguous characterization of tamoxifen-DNA adducts, we have used two additional techniques (HPLC coupled with electrospray ionization tandem mass spectrometry and 32P-postlabeling analyses) to assay for the presence of tamoxifen-DNA adducts in the human endometrial explant DNA. Tamoxifen-DNA adducts were not detected by either method. 相似文献
16.
Atylamines and nitroarenes are very important environmental and occupational pollutants. Genotoxic effects of arylamines are believed to be initiated by the formation of DNA adducts. DNA adducts of arylamines have been found in experimental animals and in exposed humans, and are predominantly formed with the carbon 8 of 2'-deoxyguanosine. Reference standards are necessary to develop methods for the quantification of DNA-adducts. Therefore, we have synthesized the 2'-deoxyguanosin-8-yI adducts of 2-methylaniline, 2-chloroaniline, 4-chloroaniline, 2,4dimethylaniline, and 2,6-dimethylaniline. The products were characterized by 1H-NMR, 13C-NMR, MS and UV. The corresponding 2'-deoxyguanosine-3' -monophosphate adducts were synthesized for the quantification of DNA adducts by the 32P-postlabelling technique. A GC-MS method was developed for the analysis of the new adducts as an alternative to the 32P-postlabelling. DNA was spiked with the synthesized adducts and treated with 0.3 m NaOH overnight at 110 °C in the presence of a deuterated internal standard. We observed up to 80% recovery from about 1 adduct in 10 8 to 1 in 10 5 nucleotides. 相似文献
17.
In order to understand and apply DNA adduct formation in fish liver as a biomarker for aquatic pollution, information concerning the natural background levels in non-contaminated organisms, caused by endogenous compounds, is of fundamental importance. In this study, DNA adducts were analysed in liver of 11 fish species from arctic and sub-arctic areas in the northern Atlantic using the nuclease P1 version of the 332P-postlabelling technique. The collected fish were assumed not to have been influenced by anthropogenic pollution apart from possible long-range transported pollutants. As polycyclic aromatic hydrocarbons (PAHs) are thought to be fundamental in forming the type of DNA adducts detected by the method used, biliary PAH metabolite levels were measured in a selection of the investigated species. In all investigated individuals, the levels of PAH metabolites were undetectable. Controlled on-site exposure experiments with benzo[a]pyrene (polar cod) and laboratory experiments with crude oil (polar cod and Atlantic cod) were conducted. DNA adducts were formed in both these species. The field-sampled fish showed undetectable levels of DNA adducts or levels just above the detection limit. The present study supports the assumption that when DNA adducts are detected by the nuclease P1 version of the 3ng method in fish liver, it can be interpreted as DNA damage caused by pollutants. 相似文献
18.
In order to understand and apply DNA adduct formation in fish liver as a biomarker for aquatic pollution, information concerning the natural background levels in non-contaminated organisms, caused by endogenous compounds, is of fundamental importance. In this study, DNA adducts were analysed in liver of 11 fish species from arctic and sub-arctic areas in the northern Atlantic using the nuclease P1 version of the 32P-postlabelling technique. The collected fish were assumed not to have been influenced by anthropogenic pollution apart from possible long-range transported pollutants. As polycyclic aromatic hydrocarbons (PAHs) are thought to be fundamental in forming the type of DNA adducts detected by the method used, biliary PAH metabolite levels were measured in a selection of the investigated species. In all investigated individuals, the levels of PAH metabolites were undetectable. Controlled on-site exposure experiments with benzo[ a]pyrene (polar cod) and laboratory experiments with crude oil (polar cod and Atlantic cod) were conducted. DNA adducts were formed in both these species. The field-sampled fish showed undetectable levels of DNA adducts or levels just above the detection limit. The present study supports the assumption that when DNA adducts are detected by the nuclease P1 version of the 32P-postlabelling method in fish liver, it can be interpreted as DNA damage caused by pollutants. 相似文献
19.
The detection and quantification of heterocyclic aromatic amine (HAA)-DNA adducts, critical biomarkers in interspecies extrapolation of toxicity data for human risk assessment, remains a challenging analytical problem. The two main analytical methods currently in use to screen for HAA-DNA adducts are the 32P-postlabeling assay and mass spectrometry, using either accelerated mass spectrometry (AMS) or liquid chromatography and electrospray ionization mass spectrometry (LC-ESI-MS). In this review, the principal methods to synthesize and characterize DNA adducts, and the methods applied to measure HAA-DNA adduct in vitro and vivo are discussed. 相似文献
20.
3-Nitrobenzanthrone (3-nitro-7 H-benz[ d, e]anthracen-7-one, 3-NBA) is a powerful mutagen and a suspected human carcinogen existing in diesel exhaust and airborne particulates. Recently, one of the major presumed metabolites of 3-NBA, 3-aminobenzanthrone (3-ABA), was detected in human urine samples. Here we analyzed DNA adducts formed in 3-NBA-exposed human hepatoma HepG2 cells by a 32P-postlabeling/thin layer chromatography (TLC) method and a 32P-postlabeling/polyacrylamide gel electrophoresis (PAGE) method. With HepG2 cells exposed to 3-NBA (0.36–36.4 μM) for 3 h, we obtained three spots or bands corresponding to adducted nucleotides. Two were assigned as 2-(2′-deoxyadenosin- N6-yl)-3-aminobenzanthrone-3′-phosphate (dA3′p- N6-C2-ABA) and 2-(2′-deoxyguanosin- N2-yl)-3-aminobenzanthrone-3′-phosphate (dG3′p- N2-C2-ABA), with identical mobilities to those of synthetic standards on PAGE analysis. The chemical structure of the substance corresponding to the other spot or band could not be identified. Quantitative analyses revealed that the major adduct was dA3′p- N6-C2-ABA and its relative adduct labeling (RAL) value at 36.4 μM of 3-NBA was 200.8 ± 86.1/10 8 nucleotide. 相似文献
|