首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toll样受体信号通路的负调控   总被引:2,自引:0,他引:2  
综述了Toll样受体(Toll-like receptors,TLRs)介导炎症反应信号通路的负调控机理.TLRs可以被病原体激活并迅速启动炎症反应,对先天性和获得性免疫反应起着重要调节作用.TLRs介导的免疫反应必须受到严格的调控,持续激活状态可长时间高表达炎症因子,导致机体产生慢性炎症、自身免疫紊乱和其他TLRs相关疾病.正常生理状态下,机体存在着多种TLRs的负调控机制,以维持免疫反应的平衡.该领域的研究近年来取得了重要进展,为许多免疫相关疾病的治疗提供了线索.  相似文献   

2.
Negative regulation of toll-like receptor-mediated immune responses   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) are involved in host defence against invading pathogens, functioning as primary sensors of microbial products and activating signalling pathways that induce the expression of immune and pro-inflammatory genes. However, TLRs have also been implicated in several immune-mediated and inflammatory diseases. As the immune system needs to constantly strike a balance between activation and inhibition to avoid detrimental and inappropriate inflammatory responses, TLR signalling must be tightly regulated. Here, we discuss the various negative regulatory mechanisms that have evolved to attenuate TLR signalling to maintain this immunological balance.  相似文献   

3.
Toll-like receptors (TLRs) are considered to be essential for the initiation of immune responses against pathogens. Although myeloid differentiation factor 88 an adaptor molecule for most TLRs, is important for protection against Toxoplasma gondii, the TLR responsible for eliciting an immune response against this obligate intracellular pathogen remains unknown. A recent article reports that mice lacking TLR9 cannot develop severe inflammatory responses to T. gondii infection. The implications of this finding are discussed here.  相似文献   

4.
5.
Toll-like receptors (TLRs) were evolved to detect invading pathogens and to induce innate immune responses in order to mount host defense mechanisms. It becomes apparent that the activation of certain TLRs is also modulated by endogenous molecules including lipid components, fatty acids. Results from epidemiological and animal studies demonstrated that saturated and polyunsaturated dietary fatty acids can differentially modify the risk of development of many chronic diseases. Inflammation is now recognized as an important underlying etiologic condition for the pathogenesis of many chronic diseases. Therefore, if the activation of TLRs and consequent inflammatory and immune responses are differentially modulated by types of lipids in vivo, this would suggest that the risk of the development of chronic inflammatory diseases and the host defense against microbial infection may be modified by the types of dietary fat consumed.  相似文献   

6.
The role of Toll-like receptors (TLRs) in innate immunity and their ability to recognise microbial products has been well characterised. TLRs are also able to recognise endogenous molecules which are released upon cell damage and necrosis and have been shown to be present in numerous autoimmune diseases. Therefore, the release of endogenous TLR ligands during inflammation and consequently the activation of TLR signalling pathways may be one mechanism initiating and driving autoimmune diseases. An increasing body of circumstantial evidence implicates a role of TLR signalling in systemic lupus erythematosus (SLE), atherosclerosis, asthma, type 1 diabetes, multiple sclerosis, bowl inflammation and rheumatoid arthritis (RA). Although at present their involvement is not comprehensively defined. However, future therapies targeting individual TLRs or their signalling transducers may provide a more specific way of treating inflammatory diseases without global suppression of the immune system.  相似文献   

7.
Activation of astrocytes and microglia and the production of proinflammatory cytokines and chemokines are often associated with virus infection in the CNS as well as a number of neurological diseases of unknown etiology. These inflammatory responses may be initiated by recognition of pathogen-associated molecular patterns (PAMPs) that stimulate TLRs. TLR7 and TLR8 were identified as eliciting antiviral effects when stimulated by viral ssRNA. In the present study, we examined the potential of TLR7 and/or TLR8 agonists to induce glial activation and neuroinflammation in the CNS by intracerebroventricular inoculation of TLR7 and/or TLR8 agonists in newborn mice. The TLR7 agonist imiquimod induced astrocyte activation and up-regulation of proinflammatory cytokines and chemokines, including IFN-beta, TNF, CCL2, and CXCL10. However, these responses were only of short duration when compared with responses induced by the TLR4 agonist LPS. Interestingly, some of the TLR7 and/or TLR8 agonists differed in their ability to activate glial cells as evidenced by their ability to induce cytokine and chemokine expression both in vivo and in vitro. Thus, TLR7 stimulation can induce neuroinflammatory responses in the brain, but individual TLR7 agonists may differ in their ability to stimulate cells of the CNS.  相似文献   

8.
9.
Toll-like receptors (TLRs) serve to initiate inflammatory signalling in response to the detection of conserved microbial molecules or products of host tissue damage. Recent evidence suggests that TLR-signalling plays a considerable role in a number of inflammatory diseases, including atherosclerosis and arthritis. Agents which modulate TLR-signalling are, therefore, receiving interest in terms of their potential to modify inflammatory disease processes. One such family of molecules, the oxidised phospholipids (OxPLs), which are formed as a result of inflammatory events and accumulate at sites of chronic inflammation, have been shown to modulate TLR-signalling in both in vitro and in vivo systems. As the interaction between OxPLs and TLRs may play a significant role in chronic inflammatory disease processes, consideration is given in this review to the potential role of OxPLs in the regulation of TLR-signalling.  相似文献   

10.
The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis.  相似文献   

11.
PDGF is one of the most potent serum mitogens, and the signalling mechanism by way of its receptor tyrosine-kinase has been extensively studied since its first purification in 1979. The identification of homology between the simian sarcoma virus oncogene, v-sis, and the B-chain of PDGF, as well as the frequent over-expression of both the ligands and receptors in various tumours and stroma led to the proposal of the PDGF-mediated autocrine and paracrine hypothesis. Consistent with the important roles of PDGF in the growth and survival of cells, the expression and activity of PDGF receptors are tightly controlled by both positive and negative feedback mechanisms at different levels. The deregulation of the control system can result in serious pathological conditions such as chronic inflammation and tumours. Understanding the molecular mechanisms for the regulatory system and the signalling pathway of PDGF is essential in order to find effective therapies in the diseases where PDGF is involved.  相似文献   

12.
Toll-like receptors (TLRs), a family of pattern recognition receptors, recognize and respond to conserved components of microbes and play a crucial role in both innate and adaptive immunity. In addition to binding exogenous ligands derived from pathogens, TLRs interact with endogenous molecules released from damaged tissues or dead cells and regulate many sterile inflammation processes. Putative endogenous TLR ligands include proteins and peptides, polysaccharides and proteoglycan, nucleic acids and phospholipids, which are cellular components, particularly extracellular matrix degradation products. Accumulating evidence demonstrates that endogenous ligand-mediated TLR signalling is involved in pathological conditions such as tissue injury, repair and regeneration; autoimmune diseases and tumorigenesis. The ability of TLRs to recognize endogenous stimulators appears to be essential to their function in regulating non-infectious inflammation. In this review, we summarize current knowledge of endogenous TLR ligands and discuss the biological significance of TLR signalling triggered by endogenous ligands in several sterile inflammation conditions.  相似文献   

13.
NOD2 of the NLRs and TLR4 of the TLRs are major pattern-recognition receptors, which sense different microbial pathogens and have important roles in innate immunity. Herein, we investigated the roles of NOD2 in TLR4-mediated signalling and gene regulation in RAW264.7 macrophages. We found that MDP (a NOD2 ligand) increased LPS-induced expressions of TNF-α, IL-1β, IL-6, iNOS and COX-2. MDP did not affect LPS-induced activation of MAPKs or IKK, while it potentiated LPS-induced NF-κB activation. Meanwhile TLR4 activation increased NOD2 mRNA expression, and upregulated NOD2 upon MDP treatment is a positive regulator of TLR4-mediated signalling. Intriguingly we found that NOD2 silencing led to increases in LPS-induced signal transduction and inflammatory responses, and a decrease in LPS-elicited homologous tolerance. We thus propose that NOD2 in the absence of MDP treatment might also play a negative regulatory role in the action of TLR4. Further, we demonstrated that both CARD and LRR domains of the NOD2 protein were responsible for the negative regulatory action on TLR4. In summary, it is the first time to demonstrate that NOD2 have dual effects on TLR4 signalling and exert a novel ligand-independent action. Elucidating molecular mechanisms by which NOD2 exerts its ligand-independent action on TLR4 requires further investigation.  相似文献   

14.
Toll样受体(Toll-like receptors,TLR)是一类可以识别病原体并迅速启动天然免疫反应的跨膜蛋白,它们也可以调节机体的获得性免疫及组织的炎症反应,是机体感知、抵御及清除病原体的关键分子。近来发现TLR在多种肝脏疾病的发生、发展及恢复过程中起着重要的调节作用,这方面的研究为许多慢性肝病的治疗提供了新的线索。该文综述了TLR在酒精性肝病、脂肪肝、病毒性肝炎、肝硬化以及肝细胞癌的病理生理学中的作用,展望了将来需重点研究的问题。  相似文献   

15.
Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7β-hydroxycholesterol (7β-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not IκBα degradation or tumour necrosis factor-α release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.  相似文献   

16.
Toll-like receptors (TLRs) recognize Mycobacterium tuberculosis (Mtb) or Mtb components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signalling cascades involved in the TLR-initiated immune response to mycobacterial infection. Although both TLR2 and TLR4 have been implicated in host interactions with Mtb, the relationship between specific mycobacterial molecules and various signal transduction pathways is not well understood. This review will discuss recent studies indicating critical roles for mycobacteria and mycobacterial components in regulation of mitogen-activated protein kinases and related signal transduction pathways that govern the outcome of infection and antibacterial defence. To better understand the roles of infection-induced signalling cascades in molecular pathogenesis, future studies are needed to clarify mechanisms that integrate the multiple signalling pathways that are activated by engagement of TLRs by both individual mycobacterial molecules and whole mycobacteria. These efforts will allow for the development of novel diagnostic and therapeutic modalities for tuberculosis that targets the intracellular signalling pathways permitting the replication of this nefarious pathogen.  相似文献   

17.
Lack of Toll IL-1R8 exacerbates Th17 cell responses in fungal infection   总被引:2,自引:0,他引:2  
TLRs contribute to the inflammatory response in fungal infections. Although inflammation is an essential component of the protective response to fungi, its dysregulation may significantly worsen fungal diseases. In this study, we tested the hypothesis that Toll IL-1R8 (TIR8)/single Ig IL-1-related receptor, a member of the IL-1R family acting as a negative regulator of TLR/IL-1R signaling, affects TLR responses in fungal infections. Genetically engineered Tir8(-/-) mice were assessed for inflammatory and adaptive Th cell responses to Candida albicans and Aspergillus fumigatus. Inflammatory pathology and susceptibility to infection were higher in Tir8(-/-) mice and were causally linked to the activation of the Th17 pathway. IL-1R signaling was involved in Th17 cell activation by IL-6 and TGF-beta in that limited inflammatory pathology and relative absence of Th17 cell activation were observed in IL-1RI(-/-) mice. These data demonstrate that TIR8 is required for host resistance to fungal infections and that it functions to negatively regulate IL-1-dependent activation of inflammatory Th17 responses. TIR8 may contribute toward fine-tuning the balance between protective immunity and immunopathology in infection.  相似文献   

18.
Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7beta-hydroxycholesterol (7beta-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not IkappaBalpha degradation or tumour necrosis factor-alpha release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.  相似文献   

19.
TLRs(Toll—likereceptors)是一类重要的模式识别受体家族,主要调节灭然免疫反应。研究发现在。肾脏固有细胞及间质细胞都有TLR表达,其介导的炎性反应参与了许多肾脏疾病的发生。多种足细胞标志蛋白的发现加快了足细胞表面分子的研究进程。目前已发现足细胞表面有TLR的表达,且TLR的表达与足细胞的损伤有关。  相似文献   

20.
The nucleotide binding oligomerization domain-like receptor (NLR) family of pattern recognition molecules is involved in a diverse array of processes required for host immune responses against invading pathogens. Unlike TLRs that mediate extracellular recognition of microbes, several NLRs sense pathogens in the cytosol and upon activation induce host defense signaling pathways. Although TLRs and NLRs differ in their mode of pathogen recognition and function, they share similar domains for microbial sensing and cooperate to elicit immune responses against the pathogen. Genetic variation in several NLR genes is associated with the development of inflammatory disorders or increased susceptibility to microbial infection. Further understanding of NLRs should provide critical insight into the mechanisms of host defense and the pathogenesis of inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号