首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular basis of an inherited epilepsy   总被引:35,自引:0,他引:35  
Lossin C  Wang DW  Rhodes TH  Vanoye CG  George AL 《Neuron》2002,34(6):877-884
Epilepsy is a common neurological condition that reflects neuronal hyperexcitability arising from largely unknown cellular and molecular mechanisms. In generalized epilepsy with febrile seizures plus, an autosomal dominant epilepsy syndrome, mutations in three genes coding for voltage-gated sodium channel alpha or beta1 subunits (SCN1A, SCN2A, SCN1B) and one GABA receptor subunit gene (GABRG2) have been identified. Here, we characterize the functional effects of three mutations in the human neuronal sodium channel alpha subunit SCN1A by heterologous expression with its known accessory subunits, beta1 and beta2, in cultured mammalian cells. SCN1A mutations alter channel inactivation, resulting in persistent inward sodium current. This gain-of-function abnormality will likely enhance excitability of neuronal membranes by causing prolonged membrane depolarization, a plausible underlying biophysical mechanism responsible for this inherited human epilepsy.  相似文献   

2.
Recent findings from studies of two families have shown that mutations in the GABA(A)-receptor gamma2 subunit are associated with generalized epilepsies and febrile seizures. Here we describe a family that has generalized epilepsy with febrile seizures plus (GEFS(+)), including an individual with severe myoclonic epilepsy of infancy, in whom a third GABA(A)-receptor gamma2-subunit mutation was found. This mutation lies in the intracellular loop between the third and fourth transmembrane domains of the GABA(A)-receptor gamma2 subunit and introduces a premature stop codon at Q351 in the mature protein. GABA sensitivity in Xenopus laevis oocytes expressing the mutant gamma2(Q351X) subunit is completely abolished, and fluorescent-microscopy studies have shown that receptors containing GFP-labeled gamma2(Q351X) protein are retained in the lumen of the endoplasmic reticulum. This finding reinforces the involvement of GABA(A) receptors in epilepsy.  相似文献   

3.
Genetic defects leading to epilepsy have been identified in gamma2 GABA(A) receptor subunit. A gamma2(R43Q) substitution is linked to childhood absence epilepsy and febrile seizure, and a gamma2(K289M) mutation is associated with generalized epilepsy with febrile seizures plus. To understand the effect of these mutations, surface targeting of GABA(A) receptors was analyzed by subunit-specific immunofluorescent labeling of living cells. We first transfected hippocampal neurons in culture with recombinant gamma2 constructs and showed that the gamma 2(R43Q) mutation prevented surface expression of the subunit, unlike gamma2(K289M) substitution. Several gamma2-subunit constructs, bearing point mutations within the Arg-43 domain, were expressed in COS-7 cells with alpha3- and beta3-subunits. R43Q and R43A substitutions dramatically reduced surface expression of the gamma2-subunit, whereas R43K, P44A, and D39A substitutions had a lesser, but still significant, impact and K289M substitution had no effect. Whereas the mutant gamma2(R43Q) was retained within intracellular compartments, alphabeta complexes were still targeted at the cell membrane. Coimmunoprecipitation experiments showed that gamma2(R43Q) was able to associate with alpha3- or beta3-subunits, although the stoichiometry of the complex with alpha3 was altered. Our data show that gamma2(R43Q) is not a dominant negative and that the mutation leads to a modification of GABA(A) receptor subunit composition on the cell surface that impairs the synaptic targeting in neurons. This study reveals an involvement of the gamma2-Arg-43 domain in the control of receptor assembly that may be relevant to the effect of the heterozygous gamma2(R43Q) mutation leading to childhood absence epilepsy and febrile seizure.  相似文献   

4.
Abstract: Various studies suggest that alterations in GABAergic function may be connected to epileptic seizures. Low CSF GABA levels have been reported in epilepsy and also febrile convulsions of children. In this study the pentet-razole seizure threshold of dogs was compared with the concentration of GABA in the CSF and blood plasma. A highly significant positive correlation was found between seizure excitability and CSF GABA level, but not between CSF and plasma GABA concentrations.  相似文献   

5.
Ramakrishnan L  Hess GP 《Biochemistry》2004,43(23):7534-7540
A recent report indicates that a lysine-to-methionine mutation (K289M) in the gamma2 subunit of a human gamma-aminobutyric acid neurotransmitter receptor, the GABA(A) receptor, is linked to generalized epilepsy with febrile seizures [Baulac et al. (2001) Nat. Genet. 28, 46-48]. This mutation caused a decreased current response to GABA [Baulac et al. (2001) Nat. Genet. 28, 46-48]. Here we determine changes that occur in the mechanism of opening and closing of transmembrane channels formed by the GABA(A) receptor as a result of this mutation. The K289M mutation was introduced into the gamma2L subunit of the rat GABA(A) receptor, and the mutated subunit was coexpressed with the alpha1 and beta2 subunits in HEK293 cells. Transient kinetic techniques suitable for investigating reactions on cell surfaces with a microsecond-to-millisecond time resolution [Hess, G. P., and Grewer, C. (1998) Methods Enzymol. 291, 443-473] were used. They allow one to determine not only the channel-opening probability and rates of receptor desensitization but also the opening and closing rates of the mutated GABA(A) receptor channel. The channel-opening equilibrium constant of the mutated receptor was found to be 5-fold lower than that of the wild type. We calculated that this decrease in the channel-opening equilibrium accounts for the dysfunction of the mutated receptor. We discuss how a knowledge of the mechanism of the mutated receptor indicates an approach for alleviating this dysfunction.  相似文献   

6.
Han Y  Qin J  Bu DF  Chang XZ  Yang ZX 《Life sciences》2006,78(25):2944-2952
Febrile seizure (FS) is a frequently encountered seizure type in childhood. Changes of brain function following FS have clinical importance. The recently identified gamma-aminobutyric acid B receptor (GABA(B)R) is a metabotropic receptor of GABA. In this study, we used a rat model of recurrent FS to investigate the changes of GABA(B)R1a and GABA(B)R2 subunits in hippocampus after recurrent FS by using Western blot, quantitative RT-PCR, double immunofluorescence, in situ hybridization and immunoprecipitation/Western blot. After treatment of hyperthermia and the presence of induced seizures once every 2 days for 10 times, GABA(B)R1a and GABA(B)R2 subunits in hippocampus were decreased after 24 h of the last treatment. The decrease of GABA(B)R1a lasted for 15 days but that of GABA(B)R2 persisted for more than 30 days. The binding of GABA(B)R1a to GABA(B)R2 in hippocampus was also decreased significantly after 24 h of the last treatment and lasted for more than 30 days. In situ hybridization showed that GABA(B)R1a mRNA was significantly decreased in dentate gyrus, and GABA(B)R2 mRNA was considerably reduced in CA3 region. In H10 and FS1 groups in which hyperthermia treatment was the same but no (H10 group) or only one seizure (FS(1) group) was induced, the decrease of GABA(B)R1a and GABA(B)R2 subunits and the reduced binding capability between GABA(B)R1a and GABA(B)R2 subunits were also detected but with less severity, and the time recovering from these abnormalities was shorter. We conclude that GABA(B)R1a and GABA(B)R2 subunits and the binding of the 2 subunits decrease in hippocampus for a relatively long period of time after recurrent FS in immature rats. These changes may result in long-lasting imbalance of excitation/inhibition function in hippocampus, and are derived from the consequences of recurrent febrile seizures.  相似文献   

7.
Tuning of gamma-aminobutyric acid type A (GABA(A)) receptor function via phosphorylation of the receptor potentially allows neurons to modulate their inhibitory input. Several kinases, both of the serine-threonine kinase and the tyrosine kinase families, have been proposed as candidates for such a modulatory role in vivo. However, no GABA(A) receptor-phosphorylating kinase physically associated with the receptor has been identified so far on a molecular level. In this study, we demonstrate a GABA(A) receptor-associated protein serine kinase phosphorylating specifically beta3-subunits of native GABA(A) receptors. The characteristics of this novel kinase clearly distinguish it from enzymatic activities that have been shown so far to phosphorylate the GABA(A) receptor. We putatively identify this protein kinase as the previously described GTAP34 (GABA(A) receptor-tubulin complex-associated protein of molecular mass 34 kDa). Using expressed recombinant fusion proteins, we identify serine 408 as a major target of the phosphorylation reaction, whereas serine 407 is not phosphorylated. This demonstrates the high specificity of the kinase. Phosphorylation of serine 408 is known to result in a decreased receptor function. The direct association of this kinase with the receptor indicates an important physiological role.  相似文献   

8.
Febrile seizures are frequent during early childhood, and prolonged (complex) febrile seizures are associated with an increased susceptibility to temporal lobe epilepsy. The pathophysiological consequences of febrile seizures have been extensively studied in rat pups exposed to hyperthermia. The mechanisms that trigger these seizures are unknown, however. A rise in brain pH is known to enhance neuronal excitability. Here we show that hyperthermia causes respiratory alkalosis in the immature brain, with a threshold of 0.2-0.3 pH units for seizure induction. Suppressing alkalosis with 5% ambient CO2 abolished seizures within 20 s. CO2 also prevented two long-term effects of hyperthermic seizures in the hippocampus: the upregulation of the I(h) current and the upregulation of CB1 receptor expression. The effects of hyperthermia were closely mimicked by intraperitoneal injection of bicarbonate. Our work indicates a mechanism for triggering hyperthermic seizures and suggests new strategies in the research and therapy of fever-related epileptic syndromes.  相似文献   

9.
Effects of cimetidine-like drugs on recombinant GABAA receptors   总被引:1,自引:0,他引:1  
Cannon KE  Fleck MW  Hough LB 《Life sciences》2004,75(21):2551-2558
Even though conventional systemic doses of cimetidine and other histamine H(2) antagonists display minimal brain penetration, central nervous system (CNS) effects (including seizures and analgesia) have been reported after administration of these drugs in animals and man. To test the hypothesis that cimetidine-like drugs produce these CNS effects via inhibition of GABA(A) receptors, the actions of these drugs were studied on seven different, precisely-defined rat recombinant GABA(A) receptors using whole-cell patch clamp recordings. The H(2) antagonists famotidine and tiotidine produced competitive and reversible inhibition of GABA-evoked currents in HEK293 cells transfected with various GABA(A) receptor subunits (IC(50) values were between 10-50 microM). In contrast, the H(2) antagonist ranitidine and the cimetidine congener improgan had very weak (if any) effects (IC(50) > 50 microM). Since the concentrations of cimetidine-like drugs required to inhibit GABA(A) receptors in vitro (greater than 50 microM) are considerably higher than those found during analgesia and/or seizures (1-2 microM), the present results suggest that cimetidine-like drugs do not appear to produce seizures or analgesia by directly inhibiting GABA(A) receptors.  相似文献   

10.
Mutations in the GABRG2 gene encoding the γ-aminobutyric acid (GABA) A receptor gamma 2 subunit are associated with genetic epilepsy with febrile seizures plus, febrile seizures plus, febrile seizures, and other symptoms of epilepsy. However, the mechanisms underlying Gabrg2-mediated febrile seizures are poorly understood. Here, we used the Cre/loxP system to generate conditional knockout (CKO) mice with deficient Gabrg2 in the hippocampus and neocortex. Heterozygous CKO mice (Gabrg2fl/wtCre+) exhibited temperature-dependent myoclonic jerks, generalised tonic-clonic seizures, increased anxiety-like symptoms, and a predisposition to induce seizures. Cortical electroencephalography showed the hyperexcitability in response to temperature elevation in Gabrg2fl/wtCre+ mice, but not in wild-type mice. Gabrg2fl/wtCre+ mice exhibited spontaneous seizures and susceptibility to temperature-induced seizures. Loss of neurons were observed in cortical layers V–VI and hippocampus of Gabrg2fl/wtCre+ mice. Furthermore, the latency of temperature- or pentylenetetrazol-induced seizures were significantly decreased in Gabrg2fl/wtCre+ mice compared with wild-type mice. In summary, Gabrg2fl/wtCre+ mice with Gabrg2 deletion in the neocortex and hippocampus reproduce many features of febrile seizures and therefore provide a novel model to further understand this syndrome at the cellular and molecular level.Subject terms: Epilepsy, Genetics of the nervous system  相似文献   

11.
Because previous work showed that in the newborn brain, but not in the adult brain, glutamate decarboxylase (GAD) is notably susceptible to heat, we have studied the possible involvement of GAD inhibition in febrile convulsions and the related changes in gamma-aminobutyric acid (GABA) content. Rats of different ages were subjected to hyperthermia, and GAD activity was determined in brain homogenates by measuring the release of 14CO2 from labeled glutamate and by measuring the formation of GABA. The latter method gave considerably lower values than the former in the youngest rats, and was considered more reliable. With this method, we found a 37-48% inhibition of GAD activity in rat pups 2-5 days old, which showed febrile seizures at progressively higher body temperatures, whereas in 10- and 15-day-old animals, which did not show convulsions, GAD activity was not affected by hyperthermia. Whole-brain GABA levels, however, did not change at any age. In contrast to GAD, choline acetyltransferase and lactic dehydrogenase activities were not altered by hyperthermia at any of the ages studied. These results suggest that a decreased efficiency of the inhibitory neurotransmission mediated by GABA, consequent to the inhibition of GAD activity, may be a factor related to febrile convulsions.  相似文献   

12.
13.
苍白球γ-氨基丁酸能神经传递及其与神经系统疾病的关系   总被引:1,自引:0,他引:1  
Chen L  Yung WH 《生理学报》2004,56(4):427-435
苍白球是基底神经节间接环路的重要核团,在机体运动功能调节中发挥重要作用。近年来,苍白球在基底神经节正常及异常功能调节中的重要性已日渐受到重视。然而,目前对苍白球内各种神经递质系统的功能活动了解较少。GABA是苍白球主要的神经递质。采用电生理记录、免疫组织化学及行为测试等实验方法,人们对大鼠苍白球GABA能神经传递系统的受体分布及功能活动有了新的认识。形态学研究揭示,苍白球存在GABAA受体及其苯二氮卓结合位点和GABAB受体。在亚细胞水平,GABAA受体主要位于对称性突触(GABA能突触)的突触后膜,而GABAB受体则位于对称性突触和非对称性突触(兴奋性突触)的突触前膜及突触后膜。功能学研究进一步揭示,激活苍白球突触前膜GABAB自身和异源性受体可分别减少GABA和谷氨酸释放;激活突触后膜GABAB受体,可引起苍白球神经元超极化。除GABAB受体外,激活苍白球GABAA受体苯二氮卓结合位点及阻断GABA重摄取可延长GABA电流持续时间,从而改变苍白球神经元兴奋性。与离体实验结果相一致,激活苍向球GABAB受体和苯二氮卓结合位点及阻断GABA重摄取可引起整体动物旋转行为。苍白球GABA神经递质系统与帕金森病病因学及癫痫发病有关。已证实,苍白球神经元放电频率的降低及簇状放电的产生与帕金森病运动减少及静止性震颤等症状直接相关。此外,电牛理及行为学实验发现,新型抗癫痫药物替加平可调节苍白球神经元功能活动.这为进一步了解苍白球与癫痫发病的关系提供了新的理论及实验依据。  相似文献   

14.
Abstract: There is compelling evidence that excessive GABA-mediated inhibition may underlie the abnormal electrical activity, initiated in the thalamus, associated with epileptic absence seizures. In particular, the GABAB receptor subtype seems to play a critical role, because its antagonists are potent inhibitors of absence seizures, whereas its agonists exacerbate seizure activity. Using a validated rat model of absence epilepsy, we have previously found no evidence of abnormal GABAB receptor density or affinity in thalamic tissue. In the present study, we have used in vivo microdialysis to monitor changes in levels of extracellular GABA and other amino acids in this brain region. We have shown that basal extracellular levels of GABA and, to a lesser extent, taurine are increased when compared with values in nonepileptic controls. However, modifying GABAergic transmission with the GABAB agonist (−)-baclofen (2 mg/kg i.p.), the GABAB antagonist CGP-35348 (200 mg/kg i.p.), or the GABA uptake inhibitor tiagabine (100 µ M ) did not produce any further alteration in extracellular GABA levels, despite the ability of these compounds to increase (baclofen and tiagabine) or decrease (CGP-35348) seizure activity. These findings suggest that the increased basal GABA levels observed in this animal model are not simply a consequence of seizure activity but may contribute to the initiation of absence seizures.  相似文献   

15.
Over the past 20 years it has become apparent that certain steroids, synthesised de novo in the brain, hence named neurosteroids, produce immediate changes (within seconds) in neuronal excitability, a time scale that precludes a genomic locus of action. Identified molecular targets underlying modulation of brain excitability include both the inhibitory GABA(A) and the excitatory NMDA receptor. Of particular interest is the interaction of certain neurosteroids with the GABA(A) receptor, the major inhibitory receptor in mammalian brain. During the last decade, compelling evidence has accrued to reveal that locally produced neurosteroids may selectively "fine tune" neuronal inhibition. A range of molecular mechanisms including the subunit composition of the receptor(s), phosphorylation and local steroid metabolism, underpin the region- and neuronal selectivity of action of neurosteroids at synaptic and extrasynaptic GABA(A) receptors. The relative contribution played by each of these mechanisms in a variety of physiological and pathophysiological scenarios is currently being scrutinised at a cellular and molecular level. However, it is not known how such mechanisms may act in concert to influence behavioural profiles in health and disease. An important question concerns the identification of the anatomical substrates mediating the repertoire of behaviours produced by neurosteroids. "Knock-in" mice expressing mutant GABA(A) subunits engineered to be insensitive to benzodiazepines or general anaesthetics have proved invaluable in evaluating the role of GABA(A) receptor subtypes in complex behaviours such as sedation, cognition and anxiety [Rudolph, U., Mohler, H., 2006. GABA-based therapeutic approaches: GABA(A) receptor subtype functions. Curr. Opin. Pharmacol. 6, 18-23]. However, the development of a similar approach for neurosteroids has been hampered by the limited knowledge that, until recently, has surrounded the identity of the amino acid residues contributing to the neurosteroid binding pocket. Here, we will review recent progress in identifying the neurosteroid binding site on the GABA(A) receptor, and discuss how these discoveries will impact on our understanding of the role of neurosteroids in health and disease.  相似文献   

16.
Anticonvulsant drug mechanisms of action   总被引:2,自引:0,他引:2  
The effects of clinically used anticonvulsant drugs on high-frequency sustained repetitive firing (SRF) of action potentials and on postsynaptic responses to iontophoretically applied gamma-aminobutyric acid (GABA) have been compared to establish a classification of anticonvulsant drugs based on cellular mechanisms of action. By using concentrations in the range of therapeutic cerebrospinal fluid values in humans, drugs have been separated into three categories: Phenytoin, carbamazepine, and valproic acid limited SRF, but did not alter GABA responses. Phenobarbital, clonazepam, and diazepam augmented GABA responses and limited SRF only at concentrations above the therapeutic range in ambulatory patients but that are achieved in the acute treatment of status epilepticus. Ethosuximide failed to affect SRF or GABA responses even at supratherapeutic concentrations. Ability of an anticonvulsant to limit SRF correlated well with efficacy against generalized tonic-clonic seizures clinically and against maximal electroshock seizures in experimental animals. Augmentation of GABA responses and lack of limitation of SRF correlated with efficacy against generalized absence seizures in humans and against pentylenetetrazol-induced seizures in animals. However, ethosuximide must act against generalized absence seizures and against pentylenetetrazol-induced seizures by a third, as yet unknown, mechanism. Other actions occurring at supratherapeutic concentrations correlated with clinical toxicity.  相似文献   

17.
GABA(C) receptors mediate rapid inhibitory neurotransmission in retina. We have mapped, in detail, the human genes which encode the three polypeptides that comprise this receptor: rho1 (GABRR1), rho2 (GABRR2) and rho3 (GABRR3). We show that GABRR1 and GABRR2 are located close together, in a region of chromosome 6q that contains loci for inherited disorders of the eye, but that GABRR3 maps to chromosome 3q11-q13.3. Our mapping data suggest that the rho polypeptide genes, which are thought to share a common ancestor with GABA(A) receptor subunit genes, diverged at an early stage in the evolution of this gene family.  相似文献   

18.
The synaptic receptor sites for the neurotransmitter gamma-aminobutyric acid (GABA) can be assayed in vitro with several radiolabeled agonists and one antagonist. Numerous criteria of specificity have been met for these binding sites. All of the ligands show heterogeneity in binding affinities. The subpopulations thus defined have a remarkably similar specificity for GABA analogs, which suggests an intimate relationship and possible interconvertibility. Modulation of GABA receptor binding by barbiturates, anions, and other membrane treatments that affect agonists and antagonists in an opposite manner suggests a three-state model of interconvertible affinities. The complex of GABA receptor and chloride ion channel contains modulatory sites for barbiturates and benzodiazepines, drugs that enhance GABA responses in neurons. The receptor complex can be solubilized in detergent with the three mutually interacting receptor activities intact. The complex has an apparent molecular weight of 355,000 and has been partially purified. GABA agonist function has been assayed at the biochemical level by measuring the activation of 36Cl- efflux from preloaded hippocampal slices by GABA, muscimol, and barbiturates. This response is blocked by the antagonists of the GABA site (bicuculline) and the barbiturate site (picrotoxin). Comparison of binding and function on the same tissue should be useful in analyzing the mechanism of action of GABA.  相似文献   

19.
We have constructed a molecular model of the ligand-binding domain of the GABA(C) receptor, which is a member of the Cys-loop ligand-gated ion channel family. The extracellular domains of these receptors share similar sequence homology (20%) with Limnaea acetylcholine-binding protein for which an X-ray crystal structure is available. We used this structure as a template for homology modeling of the GABA(C) receptor extracellular domain using FUGUE and MODELLER software. FlexX was then used to dock GABA into the receptor ligand-binding site, resulting in three alternative energetically favorable orientations. Residues located no more than 5 A from the docked GABA were identified for each model; of these, three were found to be common to all models with 14 others present only in certain models. Using data from experimental studies, we propose that the most likely orientation of GABA is with its amine close to Y198, and its carboxylate close to R104. These studies have therefore provided a model of the ligand-binding domain, which will be useful for both GABA(C) and GABA(A) receptor studies, and have also yielded an experimentally testable hypothesis of the location of GABA in the binding pocket. [Figure: see text].  相似文献   

20.
gamma-Aminobutyric acid (GABA), an important inhibitory neurotransmitter in both vertebrates and invertebrates, acts on GABA receptors that are ubiquitously expressed in the CNS. GABA(A) receptors also represent a major site of action of clinically relevant drugs, such as benzodiazepines, barbiturates, ethanol, and general anesthetics. It has been shown that the intracellular M3-M4 loop of GABA(A) receptors plays an important role in regulating GABA(A) receptor function. Therefore, studies of the function of receptor intracellular loop associated proteins become important for understanding mechanisms of regulating receptor activity. Recently, several labs have used the yeast two-hybrid assay to identify proteins interacting with GABA(A) receptors, for example, the interaction of GABA(A) receptor associated protein (GABARAP) and Golgi-specific DHHC zinc finger protein (GODZ) with gamma subunits, PRIP, phospholipase C-related, catalytically inactive proteins (PRIP-1) and (PRIP-2) with GABARAP and receptor gamma2 and beta subunits, Plic-1 with some alpha and beta subunits, radixin with the alpha5 subunit, HAP1 with the beta1 subunit, GABA(A) receptor interacting factor-1 (GRIF-1) with the beta2 subunit, and brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) with the beta3 subunit. These proteins have been shown to play important roles in modulating the activities of GABA(A) receptors ranging from enhancing trafficking, to stabilizing surface and internalized receptors, to regulating modification of GABA(A) receptors. This article reviews the current studies of GABA(A) receptor intracellular loop-associated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号