首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phospholipid synthesis in aging potato tuber tissue   总被引:9,自引:8,他引:1       下载免费PDF全文
The effect of activation (“aging”) of potato tuber slices on their phospholipid metabolism was investigated. Aged slices were incubated with 14C labeled choline, ethanolamine, methionine, serine, and acetate. In all cases, the incorporation of radioactivity into the lipid fraction increased with the length of time the slices were aged. This incorporation was shown to be true synthesis and not exchange between precursors and existing phospholipids.

The increased incorporation of labeled choline into lipids was mainly due to an increase in its uptake by the tissue, the presence of actidione during aging prevented this increased uptake. The increase in the incorporation of labeled acetate into lipids resulted from the development of a fatty acid synthetase during aging. In the case of ethanolamine, both its uptake into the tissue and its incorporation into the lipid fraction increased.

The phospholipids formed from these precursors were identified by paper and thin-layer chromatography. The major compound formed from choline was lecithin, while phosphatidylethanolamine and a small amount of lecithin were formed from ethanolamine.

  相似文献   

2.
In vivo and in vitro experiments were performed to determine how phenethyl alcohol (PEA) inhibits phospholipid synthesis in Escherichia coli. This drug drastically reduced the rate of incorporation of sn-glycerol 3-phosphate into the phospholipids of an sn-glycerol 3-phosphate auxotroph. PEA also reduced the rate of fatty acid incorporation into the phospholipids of a fatty acid auxotroph. The kinetics of PEA inhibition of the rate of incorporation of sn-glycerol 3-phosphate were almost identical to those of PEA inhibition of the rate of fatty acid incorporation into phospholipids. The in vivo experiments suggested that the rate-limiting step(s) in phospholipid biosynthesis inhibited by PEA is at the level of the acylation of sn-glycerol 3-phosphate or beyond this step. PEA inhibited the sn-glycerol 3-phosphate acyltransferase with either palmitoyl coenzyme A or palmitoyl-acyl carrier protein as the acyl donor. This drug, however, had no effect on the cytidine 5'-diphosphate-diglyceride:glycerol 3-phosphate phosphatidyl transferase, cytidine 5'-diphosphate-diglyceride:L-serine phosphatidyl transferase, and acyl coenzyme A:lysophatidic acid acyltransferase. The in vitro findings suggested that PEA inhibits phospholipid synthesis primarily at the level of sn-glycerol 3-phosphate acyltransferase.  相似文献   

3.
Rabbit lymph node and thymus lymphocytes were stimulated with concanavalin A (Con A). Cyclosporin A (CSA) inhibited in a dose-dependent way the induction of RNA and DNA synthesis; nearly complete inhibition was observed at a concentration of 200 ng/ml. Results of kinetic studies suggested that the immunosuppressive drug interfered with an early event occurring in activated lymphocytes. Among the earliest changes detectable in activated lymphocytes, the turnover of plasma membrane phospholipids is increased, predominantly of their fatty acid moieties, catalyzed by the membrane-bound lysophosphatide acyltransferase. CSA, at concentrations identical with those inhibiting macromolecular synthesis, also inhibited the Con A-stimulated specific increase in the incorporation of labeled fatty acids into plasma membrane phospholipids. When lymphocytes were stimulated with Con A for 1 hr, incorporation of labeled oleic acid and arachidonic acid approximately doubled in plasma membrane phospholipids. CSA at a concentration of 200 ng/ml prevented the elevated incorporation of labeled fatty acids into plasma membrane phospholipids of Con A-stimulated thymocytes. Concomitantly, the activation of lysolecithin acyltransferase, the key enzyme for the incorporation of long-chain fatty acids into phospholipids, was strongly inhibited. Up to high concentrations, CSA had no effect on the phospholipid metabolism of unstimulated lymphocytes. The results suggest that CSA inhibits the activation of T lymphocytes by interfering with the early activation of plasma membrane phospholipid metabolism.  相似文献   

4.
The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. ;Amsoy') were studied. Dinoben (20 mug/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 mug/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben.It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both.  相似文献   

5.
We have tested the effect of alpha-amanitin at 10, 50 and 100 micrograms/ml, on precursor uptake and incorporation into poly(A)+ RNA and poly(A)- RNA of mouse embryos on days 2, 3 and 4 of gestation. Embryos were pretreated with the inhibitor for 2 hr, then labeled for 2 hr in its continued presence. RNA fractions were separated by affinity chromatography on oligo(dT)-cellulose. alpha-Amanitin did not suppress uptake of RNA precursors at any of the concentrations tested in any stage. At 10 micrograms/ml, we could not detect any effect on incorporation into either RNA fraction in any stage. Only the highest concentration tested, 100 micrograms/ml, was effective in all stages in substantially suppressing incorporation into poly(A)+ RNA within 2 hr. Longer treatments increased the level of suppression to a maximum of about 80%. Incorporation into poly(A)- RNA was suppressed to roughly the same extent. Despite previously reported data, it cannot be assumed that alpha-amanitin at concentrations less than 100 micrograms/ml brings about a quick interruption of mRNA synthesis in preimplantation mouse embryos.  相似文献   

6.
The study of the rate of incorporation of labeled precursors for nucleic acids and protein into Staphylococcus aureus 209 P cell fraction, insoluble in trichloroacetic acid, has revealed that in the presence of tomicide in the medium in a dose of 1 MCI (600 micrograms/ml) the synthesis of DNA in inhibited rapidly and almost completely (by 90%). The inhibition of the rate of incorporation of 3H-thymidine into the cells of staphylococcal culture by tomicide directly correlates with the concentration of the preparation within the range 100-600 micrograms/ml, the inhibition of the synthesis of RNA and protein being less pronounced than the inhibition of the synthesis of DNA.  相似文献   

7.
The continuous turnover of membrane phospholipids requires a steady supply of biosynthetic precursors. We evaluated the effects of decreasing extracellular Na+ concentration on phospholipid metabolism in cultured neuroblastoma (N1E 115) cells. Incubating cultures with 145 to 0 mM NaCl caused a concentration-dependent inhibition of [32P]phosphate uptake into the water-soluble intracellular pool and incorporation into phospholipid. Phospholipid classes were differentially affected; [32P]phosphate incorporated into phosphati-dylethanolamine (PE) and phosphatidylcholine (PC) was consistently less than into phosphatidylinositol (PI) and phosphatidylserine (PS). This could not be attributed to decreased phospholipid synthesis since under identical conditions, there was no effect on arachidonic acid or ethanolamine incorporation, and choline utilization for PC synthesis was increased. The effect of Na+ was highly specific since reducing phosphate uptake to a similar extent by incubating cultures in a phosphate-deficient medium containing Na+ did not alter the relative distribution of [32P]phosphate in phospholipid. Of several cations tested only Li+ could partially (50%) replace Na+. Incubation in the presence of ouabain or amiloride had no effect on [32P]phosphate incorporation into phospholipid. The differential effects of low Na+ on [32P]phosphate incorporation into PI relative to PC and PE suggests preferential compartmentation of [32P]phosphate into ATP in pools used for phosphatidic acid synthesis and relatively less in ATP pools used for synthesis of phosphocholine and phosphoethanolamine, precursors of PC and PE, respectively. This suggestion of heterogeneous and distinct pools of ATP for phospholipid biosynthesis, and of potential modulation by Na+ ion, has important implications for understanding intracellular regulation of metabolism.  相似文献   

8.
The role of ribonucleic acid (RNA) synthesis in the development of sporangia in the saprolegniaceous mold Achlya was studied. Methods were developed for growing and treating large populations of mycelia so that the hyphal tips would differentiate into sporangia with considerable synchrony. Under the starvation conditions imposed for the differentiation of sporangia, net RNA, deoxyribonucleic acid (DNA), and protein synthesis ceased. However, incorporation of radioactive precursors into RNA continued at a high rate throughout the period of differentiation, showing that the enzymatic mechanism for RNA synthesis was still in an active state. Actinomycin D inhibited the differentiation of sporangia and the incorporation of labeled precursors into RNA. The level of actinomycin used did not inhibit the normal outgrowth and branching of the mycelia that occurred during differentiation. Thus, DNA-dependent RNA synthesis was required for the differentiation of sporangia. Sucrose gradient analysis of newly synthesized RNA showed that only the ribosomal and soluble fractions of RNA were labeled during vegetative growth. During the differentiation of sporangia, ribosomal and soluble RNA fractions were also labeled, and, in addition, a heterodisperse fraction of labeled RNA which was heavier than ribosomal RNA appeared; this fraction was not evident in the newly synthesized RNA from vegetative mycelia.  相似文献   

9.
Rabbit lymphocytes from the mesenteric lymph nodes were stimulated with concanavalin A, goat anti-rabbit immunoglobulin, or the Ca2+ ionophore A 23187. The stimulated incorporation of labeled uridine into RNA as well as of labeled thymidine into DNA was suppressed within a dose range of 40-1000 ng/ml cyclosporin A in both Con A-stimulated T lymphocytes and in anti-immunoglobulin-stimulated B lymphocytes, without affecting the resting cells. A 23187-stimulated rabbit lymphocytes proved to be more sensitive to cyclosporin A. At 40 ng/ml the immunosuppressive drug was effective in inhibiting elevated incorporation of labeled nucleosides into macromolecules in ionophore-stimulated cells. Cyclosporin A, at the same concentrations that were effective in inhibiting stimulated RNA and DNA synthesis, suppressed one of the earliest events occurring in stimulated lymphocytes, i.e., enhanced incorporation of unsaturated fatty acids into membrane phospholipids. Whereas cyclosporin A significantly inhibited the incorporation of arachidonic acid into phosphatidylcholine and phosphatidylethanolamine in concanavalin A-, anti-immunoglobulin-, and A 23187-stimulated cells, it proved to be ineffective in inhibiting the incorporation of arachidonate into phosphatidylinositol. The data indicate that cyclosporin A inhibits both T- and B-cell stimulation by interfering with a common target, e.g., the early activation of membrane phospholipid metabolism of rabbit lymphocytes.  相似文献   

10.
Changes in phospholipid metabolism in gastric mucosa caused by instillation of absolute ethanol (a cell-damaging agent) into the stomach of rats and the effects of pretreatment with 20% ethanol (a mild irritant) were investigated by using radioisotope-labeled fatty acids and glycerol. The labeled precursors were incorporated mainly into phosphatidylcholine and triacylglycerol, and also to lesser extents into phosphatidylethanolamine and phosphatidylinositol + phosphatidylserine. The instillation of absolute ethanol reduced the incorporation of fatty acids and glycerol into phospholipids within 15 min, indicating the inhibition by ethanol of de novo synthesis of phospholipids. Pretreatment with 20% ethanol caused the incorporation of fatty acids into phospholipids to be maintained after absolute ethanol instillation. These results suggest that the pretreatment with 20% ethanol may protect the cellular synthetic activity of phospholipids against damage by absolute ethanol. The incorporation of fatty acids into the free fatty acid fraction, monoacylglycerol and diacylglycerol was increased by absolute ethanol instillation, suggesting damage to the blood vessels of the gastric mucosa, and these changes were inhibited to some extent by the pretreatment with 20% ethanol.  相似文献   

11.
1. Radioactive precursors, 32 PI, [1-14C]glycerol, and [1-14C]acetate, were individually injected into the peritoneal cavity of mice bearing Ehrlich ascites tumor, and the rates of incorporation into phospholipid fraction of Ehrlich ascites tumor cells were estimated. Although no distinct difference in specific activities was observed between phosphatidylinositol and other phospholipid classes as regards the incorporation of [1-14C]acetate of [1-14C]glycerol, a higher rate of incorporation of 32Pi into phosphatidylinositol was observed. The specific activity of phosphatidylinositol reached more than ten times that of phosphatidylcholine in the first hour. 2. The radioactivities incorporated into the phospholipids of Ehrlich ascites tumor cells and liver were estimated after simultaneous injection 32Pi and [2-3H]inositol. The incorporation of 32Pi into phosphatidylinositol of liver was similar in specific activity to those of other phospholipids. The ratio (3H/32Pi) of phosphatidylinositol only slightly in the ascites tumor cells, while an appreciable decrease of the ratio was observed in the liver during the first 3 hr. 3. These results suggest that phosphatidylinositol synthesis through pathways other than de novo synthesis is rapid in ascites tumor cells.  相似文献   

12.
In order to determine the effects of a plasma phospholipid transfer protein on the transfer of phospholipids from very low density lipoproteins (VLDL) to high density lipoproteins (HDL) during lipolysis, biosynthetically labeled rat 32P-labeled VLDL was incubated with human HDL3 and bovine milk lipoprotein lipase (LPL) in the presence of the plasma d greater than 1.21 g/ml fraction or a partially purified human plasma phospholipid transfer protein (PTP). The addition of either the PTP or the d greater than 1.21 g/ml fraction resulted in a 2- to 3-fold stimulation of the transfer of phospholipid radioactivity from VLDL into HDL during lipolysis. In the absence of LPL, the PTP caused a less marked stimulation of transfer of phospholipid radioactivity. Both the d greater than 1.21 g/ml fraction and the PTP enhanced the transfer of VLDL phospholipid mass into HDL, but the percentage transfer of phospholipid radioactivity was greater than that of phospholipid mass, suggesting stimulation of both transfer and exchange processes. Stimulation of phospholipid exchange was confirmed in experiments where PTP was found to augment transfer of [14C]phosphatidylcholine radioactivity from HDL to VLDL during lipolysis. In experiments performed with human VLDL and human HDL3, both the d greater than 1.21 g/ml fraction and the PTP were found to stimulate phospholipid mass transfer from VLDL into HDL during lipolysis. Analysis of HDL by non-denaturing polyacrylamide gradient gel electrophoresis showed that enhanced lipid transfer was associated with only a slight increase in particle size, suggesting incorporation of lipid by formation of new HDL particles. In conclusion, the plasma d greater than 1.21 g/ml fraction and a plasma PTP enhance the net transfer of VLDL phospholipids into HDL and also exchange of the phospholipids of VLDL and HDL. Both the transfer and exchange activities of PTP are stimulated by lipolysis.  相似文献   

13.
In Lactobacillus plantarum 17-5, lipid synthesis appears to be correlated with protein synthesis. Inhibition of protein synthesis by chloramphenicol (50 mug/ml) caused the nearly simultaneous inhibition of incorporation of radioactive oleic acid into polar lipids before the cessation of growth. In addition, de novo fatty acid synthesis, as determined by the incorporation of radioactive acetate into cellular lipids, was also inhibited. Removal of the antibiotic resulted in the resumption of growth, protein synthesis, and polar lipid synthesis. Inhibition of protein synthesis by leucine deprivation also produced a marked reduction in the incorporation of radioactive oleic acid into the total polar lipids at about the same time that growth stopped (30 to 60 min after the removal of leucine). However, the different classes of lipids behaved differently. For example, the incorporation of oleic acid into cardiolipin was inhibited immediately upon removal of leucine from the cultures, whereas incorporation into phosphatidyl-glycerol was maintained at near normal rates for 60 min after the removal of leucine and then ceased. In contrast, the accumulation of radioactive oleic acid in a neutral lipid identified as diglyceride occurred to a much greater extent in leucine-deprived cultures than in control (+ leucine) cultures. Upon addition of leucine to leucine-deprived cultures, the rates of synthesis of phosphatidyl-glycerol and cardiolipin returned to normal; the amount of radioactivity in the diglyceride fraction decreased to normal levels concomitantly with increased phospholipid synthesis.  相似文献   

14.
Sphingomyelin metabolites have significant role in the regulation of many life processes of mammalian cells. In the present experiments the influence of phospholipid turnover and apoptosis related morphologic signs by one of this metabolite, C2 ceramide was studied, and compared to the control, untreated cells, in the unicellular Tetrahymena. The incorporation of phospholipid head group components (serine, phosphorus) show a clear time-dependence; while the incorporation of fatty acid component (palmitic acid) is very fast: no significant alterations were found between 5- and 60-min incubations. C2 ceramide treatment didn't alter 3H-palmitic acid incorporation into phospholipids, however 3H-serine incorporation was mainly inhibited. The amount of total incorporated 32P was also decreased, on the other hand the lover concentration C2 ceramide (10 μM) elevated the synthesis of inositol phospholipids. The higher concentration of C2 ceramide (50 μM) had inhibitory effect on the synthesis of each phospholipids examined. This means that in the presence of the C2 ceramide the synthesis, recovery and turnover of phospholipids, participating in signal transduction, are altered. However these observations were based the uptake of labeled phospholipid precursors, which gives information on the dynamics of the process, without using lipid mass measurements. C2 ceramide also caused the rounding off the cells, DNA degradation and nuclear condensation. These latter observations point to morphological signs of apoptosis. The results call attention to the role of sphingomyelin metabolites on signalization of unicellulars, to the cross-talk between the inositol phospholipids and sphingomyelin metabolites, and the role of these molecules in the apoptotic processes at a low evolutionary level.  相似文献   

15.
Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with [3H]myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. In contrast, in vitro acylation of both the synthetase and transferase subunits, as well as the activities of luciferase, transferase, and aldehyde dehydrogenase, were not adversely affected by cerulenin. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10 micrograms/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from [14C]acetate, whereas uptake and incorporation of exogenous [14C]myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with [3H]tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with [3H]tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which [3H]myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction.  相似文献   

16.
Salvin is a preparation of Salvia officinalis L. Its effect on synthesis of macromolecules in cells of Staphylococcus aureus 209P was studied with labeled precursors in a system used for investigation of peptidoglycan synthesis. At a concentration of 10 micrograms/ml salvin inhibited incorporation of 14C-lysine into the cell wall polymer and protein fraction by 42.9 and 8.9 per cent respectively and stimulated incorporation of 3H-thymidine and 3H-uridine into the nucleic acid fraction. In the presence of salvin in a quantity of 120 micrograms/ml there was observed inhibition of 3H-uridine incorporation into the nucleic acid fraction by 53.3 per cent and 14C-lysine into the protein fraction by 74.5 per cent along with inhibition of peptidoglycan synthesis by 95.5 per cent. The results conformed to the findings of electron microscopic investigation of the solving effect on ultrastructure of S. aureus 209P. They confirmed the previous assumption that salvin had the primary effect on the processes directly associated with synthesis of the cell wall polymer.  相似文献   

17.
Announcement     
Phosphate concentration was found to control the biosynthesis of the antibiotic candicidin by resting cells of Streptomyces griseus. Phosphate concentrations above 1 mM decreased the rate of incorporation of [14C]propionate and [14C]p-aminobenzoic acid into candicidin in relation to the concentration of phosphate. The inhibitory effect of phosphate on incorporation of labeled precursors into candicidin was not caused by inhibition of cellular uptake of precursors. Protein synthesis, sensitive to chloramphenicol, was not affected by phosphate levels that inhibit antibiotic synthesis. Similarly, phosphate concentrations inhibitory to antibiotic synthesis did not affect rifampinsensitive RNA synthesis.  相似文献   

18.
The effect of trimethoprim [2,4-diamino-5(2',4',5'trimethoxybenzyl)-pyrimidine] in the presence of thymine on Escherichia coli B temperature-sensitive and non-temperature-sensitive Thy(') strains and a phosphodeoxyribomutase-negative mutant was studied. The inhibitory effect of 5 mug of trimethoprim per ml on the growth of E. coli B was not overcome by thymine, thymidine, or thymidylate even in the presence of one-carbon metabolites and related metabolites. Deoxyribonucleic acid (DNA) and protein synthesis were more severely inhibited than ribonucleic acid (RNA) synthesis. The inhibition of DNA synthesis was partially reversed by addition of deoxyadenosine to increase the incorporation of exogenous thymine. By contrast, the inhibition of protein was not reversed even with one-carbon metabolites present, in keeping with the requirement for formylmethionyl-transfer RNA(F) for initiation. However, the inhibition of both DNA and protein synthesis in a phosphodeoxyribomutase-negative strain by 1 mug of trimethoprim per ml with thymine present was partially reversed by deoxyadenosine and one-carbon metabolites, and nearly normal growth occurred. 5-Fluorodeoxyuridine added at the time of addition of trimethoprim prevented the inhibition. Sulfadiazine in the presence of thymine inhibited both Thy(+) and Thy(-) strains whereas trimethoprim (with thymine) did not inhibit Thy(-) organisms. The effect of trimethoprim on the incorporation of labeled thymine into DNA was also studied. These experiments support the concept that trimethoprim in conjunction with the action of thymidylate synthetase inhibits the growth of Thy(+) cells because of a depletion of tetrahydrofolate. DNA synthesis is inhibited initially by a limitation of thymine nucleotide precursor, resulting from the indirect inhibition of thymidylate synthetase and the poor incorporation of exogenous thymine.  相似文献   

19.
There is a developmental increase in fatty acid biosynthesis and surfactant production in late-gestation fetal lung and both are accelerated by glucocorticoids. We have examined the distribution of the newly synthesized fatty acids to determine whether they are preferentially incorporated into surfactant. Explants of 18 day fetal rat lung were cultured with and without dexamethasone for 48 h and then with [3H]acetate for 4 h after which labeled fatty acids were measured. Incorporation of radioactivity from acetate was considered a measure of newly synthesized fatty acids. Phospholipids contained 86% of the newly synthesized fatty acids of which approx. 80% were in phosphatidylcholine. Phosphatidylcholine and disaturated phosphatidylcholine contained a much greater percentage of the labeled fatty acids than of the phospholipid mass determined by phosphorus assay while phosphatidylethanolamine, phosphatidylserine and sphingomyelin contained less. Dexamethasone increased the rate of acetate incorporation into total lipid fatty acids but it had little effect on fatty acid distribution, except that it increased the percentages in phosphatidylglycerol and disaturated phosphatidylcholine. The hormone also increased the mass of these two phospholipids to a greater extent than that of the total. These data suggested that the newly synthesized fatty acids are preferentially incorporated into surfactant phospholipids and that this process is accelerated by dexamethasone. However, since phosphatidylcholine and phosphatidylglycerol are not exclusive to surfactant, we compared isolated lamellar bodies with a residual fraction not enriched in surfactant. The rate of acetate incorporation into fatty acids in lamellar body phosphatidylcholine as well as its specific activity (radioactivity per unit phosphorus) were both increased by dexamethasone. Specific activity, however, was no greater in the lamellar bodies than in the residual fraction in both control and dexamethasone-treated cultures. Therefore, there is no preferential incorporation of newly synthesized fatty acids into phospholipids in surfactant as opposed to those in other components of the lung.  相似文献   

20.
Isolated brain capillaries from 2-month-old rats were incubated for 2 h in the presence of [3-14C]acetoacetate, D-3-hydroxy[3-14C]butyrate, [U-14C]glucose, [1-14C]acetate or [1-14C]butyrate. Labelled CO2 was collected as an index of oxidative metabolism and incorporation of label precursors into lipids was determined. The rate of CO2 production from glucose was slightly higher than from the other substrates. Interestingly, acetoacetate was oxidized at nearly the same rate as glucose. This shows that ketone bodies could be used as a source of energy by brain capillaries. Radiolabelled substrates were also used for the synthesis of lipids, which was suppressed by the addition of albumin. The incorporation of [U-14C]glucose in total lipids was 10-times higher than that from other precursors. However, glucose labelled almost exclusively the glycerol backbone of phospholipids, especially of phosphatidylcholine. Ketone bodies as well as glucose were incorporated mainly into phospholipids, whereas acetate and butyrate were mainly incorporated into neutral lipids. The contribution to fatty acid synthesis of various substrates was in the following order: butyrate greater than or equal to acetate greater than ketone bodies greater than or equal to glucose. All precursors except glucose were used for sterol synthesis. Glucose produced almost exclusively the glycerol backbone of phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号