首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of a cis-Golgi matrix protein, GM130   总被引:18,自引:3,他引:15       下载免费PDF全文
《The Journal of cell biology》1995,131(6):1715-1726
Antisera raised to a detergent- and salt-resistant matrix fraction from rat liver Golgi stacks were used to screen an expression library from rat liver cDNA. A full-length clone was obtained encoding a protein of 130 kD (termed GM130), the COOH-terminal domain of which was highly homologous to a Golgi human auto-antigen, golgin-95 (Fritzler et al., 1993). Biochemical data showed that GM130 is a peripheral cytoplasmic protein that is tightly bound to Golgi membranes and part of a larger oligomeric complex. Predictions from the protein sequence suggest that GM130 is an extended rod-like protein with coiled-coil domains. Immunofluorescence microscopy showed partial overlap with medial- and trans-Golgi markers but almost complete overlap with the cis-Golgi network (CGN) marker, syntaxin5. Immunoelectron microscopy confirmed this location showing that most of the GM130 was located in the CGN and in one or two cisternae on the cis-side of the Golgi stack. GM130 was not re-distributed to the ER in the presence of brefeldin A but maintained its overlap with syntaxin5 and a partial overlap with the ER- Golgi intermediate compartment marker, p53. Together these results suggest that GM130 is part of a cis-Golgi matrix and has a role in maintaining cis-Golgi structure.  相似文献   

2.
Members of the Rab family of small molecular weight GTPases regulate the fusion of transport intermediates to target membranes along the biosynthetic and endocytic pathways. We recently demonstrated that Rab1 recruitment of the tethering factor p115 into a cis -SNARE complex programs coat protein II vesicles budding from the endoplasmic reticulum (donor compartment) for fusion with the Golgi apparatus (acceptor compartment) (Allan BB, Moyer BD, Balch WE. Science 2000; 289: 444–448). However, the molecular mechanism(s) of Rab regulation of Golgi acceptor compartment function in endoplasmic reticulum to Golgi transport are unknown. Here, we demonstrate that the cis -Golgi tethering protein GM130, complexed with GRASP65 and other proteins, forms a novel Rab1 effector complex that interacts with activated Rab1-GTP in a p115-independent manner and is required for coat protein II vesicle targeting/fusion with the cis -Golgi. We propose a 'homing hypothesis' in which the same Rab interacts with distinct tethering factors at donor and acceptor membranes to program heterotypic membrane fusion events between transport intermediates and their target compartments.  相似文献   

3.
The function of the pre-Golgi intermediate compartment (IC) and its relationship with the endoplasmic reticulum (ER) and Golgi remain only partially understood. Here, we report striking segregation of IC domains in polarized PC12 cells that develop neurite-like processes. Differentiation involves expansion of the IC and movement of Rab1-containing tubules to the growth cones of the neurites, whereas p58- and COPI-positive IC elements, like rough ER and Golgi, remain in the cell body. Exclusion of Rab1 effectors p115 and GM130 from the neurites further indicated that the centrifugal, Rab1-mediated pathway has functions that are not directly related to ER-to-Golgi trafficking. Disassembly of COPI coats did not affect this pathway but resulted in missorting of p58 to the neurites. Live cell imaging showed that green fluorescent protein (GFP)-Rab1A-containing IC elements move bidirectionally both within the neurites and cell bodies, interconnecting different ER exit sites and the cis-Golgi region. Moreover, in nonpolarized cells GFP-Rab1A-positive tubules moved centrifugally towards the cell cortex. Hydroxymethylglutaryl-CoA reductase, the key enzyme of cholesterol biosynthesis, colocalized with slowly sedimenting, Rab1-enriched membranes when the IC subdomains were separated by velocity sedimentation. These results reveal a novel pathway directly connecting the IC with the cell periphery and suggest that this Rab1-mediated pathway is linked to the dynamics of smooth ER.  相似文献   

4.
Golgins in the structure and dynamics of the Golgi apparatus   总被引:28,自引:0,他引:28  
Golgins are a family of coiled-coil proteins associated with the Golgi apparatus necessary for tethering events in membrane fusion and as structural supports for Golgi cisternae. Recent work has shown that golgins such as GM130, golgin-45 and p115 bind to Rab GTPases via their coiled-coil domains, and that GM130, rather than being part of a static structural matrix, is in dynamic exchange between the membrane surface and the cytoplasm. Golgins such as bicaudal-D1 and -D2 bind to Rab6, but, rather than tethering membranes together, link vesicles to the cytoskeleton, thus adding a new function for this class of proteins. Other golgins containing the Golgi targeting GRIP domain, rather than binding Rabs, interact with and are recruited to membranes by another class of GTPase, the Arls. Current evidence therefore suggests that golgins function in a variety of membrane-membrane and membrane-cytoskeleton tethering events at the Golgi apparatus, and that all these are regulated by small GTPases of the Rab and Arl families.  相似文献   

5.
The Golgi apparatus occupies a central position within the secretory pathway, but the molecular mechanisms responsible for its assembly and organization remain poorly understood. We report here the identification of zinc finger protein-like 1 (ZFPL1) as a novel structural component of the Golgi apparatus. ZFPL1 is a conserved and widely expressed integral membrane protein with two predicted zinc fingers at the N-terminus, the second of which is a likely ring domain. ZFPL1 directly interacts with the cis-Golgi matrix protein GM130. Depletion of ZFPL1 results in the accumulation of cis-Golgi matrix proteins in the intermediate compartment (IC) and the tubulation of cis-Golgi and IC membranes. Loss of ZFPL1 function also impairs cis-Golgi assembly following brefeldin A washout and slows the rate of cargo trafficking into the Golgi apparatus. Effects upon Golgi matrix protein localization and cis-Golgi structure can be rescued by wild-type ZFPL1 but not mutants defective in GM130 binding. Together, these data suggest that ZFPL1 has an important function in maintaining the integrity of the cis-Golgi and that it does so through interactions with GM130.  相似文献   

6.
Biochemical data have shown that COPI-coated vesicles are tethered to Golgi membranes by a complex of at least three proteins: p115, giantin, and GM130. p115 binds to giantin on the vesicles and to GM130 on the membrane. We now examine the function of this tethering complex in vivo. Microinjection of an N-terminal peptide of GM130 or overexpression of GM130 lacking this N-terminal peptide inhibits the binding of p115 to Golgi membranes. Electron microscopic analysis of single microinjected cells shows that the number of COP-sized transport vesicles in the Golgi region increases substantially, suggesting that transport vesicles continue to bud but are less able to fuse. This was corroborated by quantitative immunofluorescence analysis, which showed that the intracellular transport of the VSV-G protein was significantly inhibited. Together, these data suggest that this tethering complex increases the efficiency with which transport vesicles fuse with their target membrane. They also provide support for a model of mitotic Golgi fragmentation in which the tethering complex is disrupted by mitotic phosphorylation of GM130.  相似文献   

7.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

8.
When the ER to Golgi transport is blocked by a GTP-restricted mutant of Sar1p (H79G) in NRK-52E cells, most Golgi resident proteins are transported back into the ER. In contrast, the cis-Golgi matrix proteins GM130 and GRASP65 are retained in punctate cytoplasmic structures, namely Golgi remnants. Significant amounts of the medial-Golgi matrix proteins golgin-45, GRASP55 and giantin are retained in the Golgi remnants, but a fraction of these proteins relocates to the ER. Golgin-97, a candidate trans-Golgi network matrix protein, is retained in Golgi remnant-like structures, but mostly separated from GM130 and GRASP65. Interestingly, most Sec13p, a COPII component, congregates into larger cytoplasmic clusters soon after the microinjection of Sar1p(H79G), and these move to accumulate around the Golgi apparatus. Sec13p clusters remain associated with Golgi remnants after prolonged incubation. Electron microscopic analysis revealed that Golgi remnants are clusters of larger vesicles with smaller vesicles, many of which are coated. GM130 is mainly associated with larger vesicles and Sec13p with smaller coated vesicles. The Sec13p clusters disperse when p115 binding to the Golgi apparatus is inhibited. These results suggest that cis-Golgi matrix proteins resist retrograde transport flow and stay as true residents in Golgi remnants after the inhibition of ER to Golgi transport.  相似文献   

9.
Small GTPases and coiled-coil proteins of the golgin family help to tether COPI vesicles to Golgi membranes. At the cis-side of the Golgi, the Rab1 GTPase binds directly to each of three coiled-coil proteins: p115, GM130, and as now shown, Giantin. Rab1 binds to a coiled-coil region within the tail domain of p115 and this binding is inhibited by the C-terminal, acidic domain of p115. Furthermore, GM130 and Giantin bind to the acidic domain of p115 and stimulate p115 binding to Rab1, suggesting that p115 binding to Rab1 is regulated. Regulation of this interaction by proteins such as GM130 and Giantin may control the membrane recruitment of p115 by Rab1.  相似文献   

10.
Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.  相似文献   

11.
By forming a molecular tether between two membranes, p115, giantin, and GM130 may mediate multiple Golgi-related processes including vesicle transport, cisternae formation, and cisternal stacking. The tether is proposed to involve the simultaneous binding of p115 to giantin on one membrane and to GM130 on another membrane. To explore this model, we tested for the presence of the putative giantin-p115-GM130 ternary complex. We first mapped p115-binding site in giantin to a 70-amino acid coiled-coil domain at the extreme N terminus, a position that may exist up to 400 nm away from the Golgi membrane. We then generated glutathione S-transferase (GST) fusion proteins containing either giantin's or GM130's p115 binding site and tested whether such proteins could bind p115 and GM130 or bind p115 and giantin, respectively. Unexpectedly, GST fusions containing either the giantin or the GM130 p115 binding site efficiently bound p115, but the p115 bound to GST-giantin did not bind GM130, and the p115 bound to GST-GM130 did not bind giantin. To explain this result, we mapped the giantin binding site in p115 and found that it is located at the C-terminal acidic domain, the same domain involved in binding GM130. The presence of a single binding site in p115 for giantin and GM130 was confirmed by demonstration that giantin and GM130 compete for binding to p115. These results question a simple tethering model involving a ternary giantin-p115-GM130 complex and suggest that p115-giantin and p115-GM130 interactions might mediate independent membrane tethering events.  相似文献   

12.
We have identified a 55 kDa protein, named GRASP55 (Golgi reassembly stacking protein of 55 kDa), as a component of the Golgi stacking machinery. GRASP55 is homologous to GRASP65, an N-ethylmaleimide-sensitive membrane protein required for the stacking of Golgi cisternae in a cell-free system. GRASP65 exists in a complex with the vesicle docking protein receptor GM130 to which it binds directly, and the membrane tethering protein p115, which also functions in the stacking of Golgi cisternae. GRASP55 binding to GM130, could not be detected using biochemical methods, although a weak interaction was detected with the yeast two-hybrid system. Cryo-electron microscopy revealed that GRASP65, like GM130, is present on the cis-Golgi, while GRASP55 is on the medial-Golgi. Recombinant GRASP55 and antibodies to the protein block the stacking of Golgi cisternae, which is similar to the observations made for GRASP65. These results demonstrate that GRASP55 and GRASP65 function in the stacking of Golgi cisternae.  相似文献   

13.
Tethering factors regulate the targeting of membrane‐enclosed vesicles under the control of Rab GTPases. p115, a golgin family tether, has been shown to participate in multiple stages of ER/Golgi transport. Despite extensive study, the mechanism of action of p115 is poorly understood. SNARE proteins make up the machinery for membrane fusion, and strong evidence shows that function of p115 is directly linked to its interaction with SNAREs. Using a gel filtration binding assay, we have demonstrated that in solution p115 stably interacts with ER/Golgi SNAREs rbet1 and sec22b, but not membrin and syntaxin 5. These binding preferences stemmed from selectivity of p115 for monomeric SNARE motifs as opposed to SNARE oligomers. Soluble monomeric rbet1 can compete off p115 from coat protein II (COPII) vesicles. Furthermore, excess p115 inhibits p115 function in trafficking. We conclude that monomeric SNAREs are a major binding site for p115 on COPII vesicles, and that p115 dissociates from its SNARE partners upon SNAREpin assembly. Our results suggest a model in which p115 forms a mixed p115/SNARE helix bundle with a monomeric SNARE, facilitates the binding activity and/or concentration of the SNARE at prefusion sites and is subsequently ejected as SNARE complex formation and fusion proceed.   相似文献   

14.
We previously reported that p97/p47-assisted membrane fusion is important for the reassembly of organelles at the end of mitosis, but not for their maintenance during interphase. We have now identified a p97 adaptor protein, p37, which forms a complex with p97 in the cytosol and localizes to the Golgi and ER. siRNA experiments revealed that p37 is required for Golgi and ER biogenesis. Injection of anti-p37 antibodies into cells at different cell cycle stages showed that p37 plays an important role in both Golgi and ER maintenance during interphase as well as in their reassembly at the end of mitosis. In an in vitro Golgi reassembly assay, the p97/p37 complex has membrane fusion activity. In contrast to the p97/p47 pathway, this pathway requires p115-GM130 tethering and SNARE GS15, but not syntaxin5. Interestingly, although VCIP135 is also required, its deubiquitinating activity is unnecessary for p97/p37-mediated activities.  相似文献   

15.
The transport factor p115 is essential for endoplasmic reticulum (ER) to Golgi traffic. P115 interacts with two Golgi proteins, GM130 and giantin, suggesting that they might also participate in ER-Golgi traffic. Here, we show that peptides containing the GM130 or the giantin p115 binding domain and anti-GM130 and anti-giantin antibodies inhibit transport of vesicular stomatitis virus (VSV)-G protein to a mannosidase II-containing Golgi compartment. To determine whether p115, GM130, and giantin act together or sequentially during transport, we compared kinetics of traffic inhibition. Anti-p115, anti-GM130, and anti-giantin antibodies inhibited transport at temporally distinct steps, with the p115-requiring step before the GM130-requiring stage, and both preceding the giantin-requiring stage. Examination of the distribution of the arrested VSV-G protein showed that anti-p115 antibodies inhibited transport at the level of vesicular-tubular clusters, whereas anti-GM130 and anti-giantin antibodies inhibited after the VSV-G protein moved to the Golgi complex. Our results provide the first evidence that GM130 and giantin are required for the delivery of a cargo protein to the mannosidase II-containing Golgi compartment. These data are most consistent with a model where transport from the ER to the cis/medial-Golgi compartments requires the action of p115, GM130, and giantin in a sequential rather than coordinate mechanism.  相似文献   

16.
Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.  相似文献   

17.
Coat protein I (COPI) transport vesicles can be tethered to Golgi membranes by a complex of fibrous, coiled-coil proteins comprising p115, Giantin and GM130. p115 has been postulated to act as a bridge, linking Giantin on the vesicle to GM130 on the Golgi membrane. Here we show that the acidic COOH terminus of p115 mediates binding to both GM130 and Giantin as well as linking the two together. Phosphorylation of serine 941 within this acidic domain enhances the binding as well as the link between them. Phosphorylation is mediated by casein kinase II (CKII) or a CKII-like kinase. Surprisingly, the highly conserved NH(2)-terminal head domain of p115 is not required for the NSF (N-ethylmaleimide-sensitive fusion protein)-catalyzed reassembly of cisternae from mitotic Golgi fragments in a cell-free system. However, the ability of p115 to link GM130 to Giantin and the phosphorylation of p115 at serine 941 are required for NSF-catalyzed cisternal regrowth. p115 phosphorylation may be required for the transition from COPI vesicle tethering to COPI vesicle docking, an event that involves the formation of trans-SNARE [corrected] (trans-soluble NSF attachment protein [SNAP] receptor) complexes.  相似文献   

18.
We used multiple approaches to investigate the role of Rab6 relative to Zeste White 10 (ZW10), a mitotic checkpoint protein implicated in Golgi/endoplasmic reticulum (ER) trafficking/transport, and conserved oligomeric Golgi (COG) complex, a putative tether in retrograde, intra-Golgi trafficking. ZW10 depletion resulted in a central, disconnected cluster of Golgi elements and inhibition of ERGIC53 and Golgi enzyme recycling to ER. Small interfering RNA (siRNA) against RINT-1, a protein linker between ZW10 and the ER soluble N-ethylmaleimide-sensitive factor attachment protein receptor, syntaxin 18, produced similar Golgi disruption. COG3 depletion fragmented the Golgi and produced vesicles; vesicle formation was unaffected by codepletion of ZW10 along with COG, suggesting ZW10 and COG act separately. Rab6 depletion did not significantly affect Golgi ribbon organization. Epistatic depletion of Rab6 inhibited the Golgi-disruptive effects of ZW10/RINT-1 siRNA or COG inactivation by siRNA or antibodies. Dominant-negative expression of guanosine diphosphate-Rab6 suppressed ZW10 knockdown induced-Golgi disruption. No cross-talk was observed between Rab6 and endosomal Rab5, and Rab6 depletion failed to suppress p115 (anterograde tether) knockdown-induced Golgi disruption. Dominant-negative expression of a C-terminal fragment of Bicaudal D, a linker between Rab6 and dynactin/dynein, suppressed ZW10, but not COG, knockdown-induced Golgi disruption. We conclude that Rab6 regulates distinct Golgi trafficking pathways involving two separate protein complexes: ZW10/RINT-1 and COG.  相似文献   

19.
Semi-intact cells, a cell population in which the plasma membrane is perforated to expose intact intracellular organelles (Beckers, C. J. M., Keller, D. S., and Balch, W. E. (1987) Cell 50, 523-534), efficiently reconstitute vesicular trafficking of protein from the endoplasmic reticulum (ER) to the cis Golgi compartment. We now extend these studies to biochemically dissect transport of protein between the ER and the Golgi into a series of sequential intermediate steps involved in the budding and fusion of carrier vesicles. At least two broad categories of transport intermediates can be detected, those that involve early steps in transport and those involved in late, fusion-related events. Early transport steps require the transport of protein through a novel intermediate compartment in which protein accumulates at reduced temperature (15 degrees C). We demonstrate that both entry and exit from this 15 degrees C compartment can be successfully reconstituted in vitro. A late step in delivery of protein to the cis Golgi compartment requires Ca2+ (pCa7) and is coincident with a step which is sensitive to a peptide analog which blocks interaction between the Rab family of small GTP-binding proteins and a downstream effector protein(s) (Plutner, H., Schwaninger, R., Pind, S., and Balch, W. E. (1990) EMBO J. 9, 2375-2384). The combined results suggest that a single round of vesicular transport between the ER and the Golgi involves a rapid transit through N-ethylmaleimide-sensitive, guanosine 5'-(3-O-thio)triphosphate-sensitive, ATP- and cytosol-dependent step(s) involved in vesicle formation or transport to a novel intermediate compartment, followed by a regulated fusion event triggered in the presence of Ca2+ and functional components interacting with member(s) of the Rab gene family.  相似文献   

20.
Polycystin-2 (also called TRPP2), an integral membrane protein mutated in patients with cystic kidney disease, is located in the primary cilium where it is thought to transmit mechanical stimuli into the cell interior. After studying a series of polycystin-2 deletion mutants we identified two amino acids in loop 4 that were essential for the trafficking of polycystin-2 to the somatic (nonciliary) plasma membrane. However, polycystin-2 mutant proteins in which these two residues were replaced by alanine were still sorted into the cilium, thus indicating that the trafficking routes to the somatic and ciliary plasma membrane compartments are distinct. We also observed that the introduction of dominant-negative Sar1 mutant proteins and treatment of cells with brefeldin A prevented the transport into the ciliary plasma membrane compartment, whereas metabolic labeling experiments, light microscopical imaging, and high-resolution electron microscopy revealed that full-length polycystin-2 did not traverse the Golgi apparatus on its way to the cilium. These data argue that the transport of polycystin-2 to the ciliary and to the somatic plasma membrane compartments originates in a COPII-dependent fashion at the endoplasmic reticulum, that polycystin-2 reaches the cis side of the Golgi apparatus in either case, but that the trafficking to the somatic plasma membrane goes through the Golgi apparatus whereas transport vesicles to the cilium leave the Golgi apparatus at the cis compartment. Such an interpretation is supported by the finding that mycophenolic acid treatment resulted in the colocalization of polycystin-2 with GM130, a marker of the cis-Golgi apparatus. Remarkably, we also observed that wild-type Smoothened, an integral membrane protein involved in hedgehog signaling that under resting conditions resides in the somatic plasma membrane, passed through the Golgi apparatus, but the M2 mutant of Smoothened, which is constitutively located in the ciliary but not in the somatic plasma membrane, does not. Finally, a dominant-negative form of Rab8a, a BBSome-associated monomeric GTPase, prevented the delivery of polycystin-2 to the primary cilium whereas a dominant-negative form of Rab23 showed no inhibitory effect, which is consistent with the view that the ciliary trafficking of polycystin-2 is regulated by the BBSome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号