首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The wheat stem rust resistance gene Sr6, present in several wheat cultivars, confers a high level of resistance against a wide range of races of Puccinia graminis f. sp. tritici. Resistance conferred by Sr6 is influenced by temperature, light intensity, and genetic background of the recipient genotype. Here, we report the identification and validation of molecular markers linked to Sr6 that can be used for the detection of this gene in wheat breeding programs. A mapping population of 136 F2 plants and their F2:3 families derived from a cross between near-isogenic lines, ‘Chinese Spring’ and ISr6-Ra, were screened for stem rust reaction in the seedling stage. Bulked segregant analysis (BSA) based on seedling tests was used to screen 418 SSR markers that covered the entire genome of wheat. Four markers, Xwmc453, Xcfd43, Xcfd77, and Xgwm484, were mapped within a chromosome region that spanned 9.7 cM from Sr6. The closest markers, Xwmc453 and Xcfd43, were linked to Sr6 at a distance of 1.1 and 1.5 cM, respectively. The markers Xwmc453 and Xcfd43 amplified Sr6-specific marker alleles that were diagnostic for Sr6 in a diverse set of 46 wheat accessions and breeding lines developed and/or collected in Australia, Canada, China, Egypt, Ethiopia, Kenya, Mexico, South Africa, and USA. These markers can now be used for marker-assisted selection of Sr6 and for pyramiding it with other stem rust resistance genes.  相似文献   

2.
 Chinese accessions of Triticum tauschii and T. aestivum L. from the Sichuan white (SW), Yunnan hulled (YH), Tibetan weedrace (TW), and Xinjiang rice (XR) wheat groups were subjected to RFLP analysis. T. tauschii and landraces of T. aestivum from countries in Southwest Asia were also evaluated. For T. tauschii, a west to east gradient was apparent where the Chinese accessions exhibited less diversity than those from Southwest Asia. Compared to the Southwest Asian gene pool, the Chinese T. tauschii was highly homogeneous giving a low frequency of polymorphic bands (16%) and banding patterns (1.33 per probe) with 75 RFLP probe-HindIII combinations. Accessions of T. tauschii from Afghanistan and Pakistan were genetically more similar to the Chinese T. tauschii than those from Iran. Of 368 bands found for 39 Chinese hexaploid wheat accessions with 63 RFLP probe-HindIII combinations, 28.3% were polymorphic with an average of 2.6 banding patterns per probe and 5.0 bands per genotype. The individual Chinese landrace wheat groups revealed less variation than those from Afghanistan, Iran, and Turkey. When classified into country based groups, however, the diversity level over all Chinese landraces was greater than that of some Southwest Asian landraces, especially those from Afghanistan and Iran . The XR wheat group was genetically distinct from the other three Chinese landrace groups and was more related to the Southwest Asian landraces. The TW group was genetically similar to, but more diverse than, the SW and YH groups. The Chinese landraces had a higher degree of genetic relatedness to the Southwest Asian T. tauschii, particularly to accessions from Iran, rather than to the Chinese T. tauschii. ‘Chinese Spring’ was most related to ‘Chengdu-guang-tou’, a cultivar from the SW wheat group. Received: 13 May 1997 / Accepted: 19 September 1997  相似文献   

3.
‘Express’, a hard red spring wheat cultivar that has been widely grown in the western United States, is used to differentiate races of Puccinia striiformis f. sp. tritici, the causal fungal pathogen of wheat stripe rust. To identify genes conferring race-specific, overall resistance to stripe rust, Express was crossed with ‘Avocet S’. The parents and F1, F2, F3 and F5 populations were tested with races PST-1, PST-21, PST-43, and PST-45 of P. striiformis f. sp. tritici in the seedling stage under controlled greenhouse conditions. Two dominant genes for resistance to stripe rust were identified, one conferring resistance to PST-1 and PST-21, and the other conferring resistance to all four races. Linkage groups were constructed for the resistance genes using 146 F5 lines to establish resistance gene analog and chromosome-specific simple sequence repeat marker polymorphisms. The gene for resistance to races PST-1 and PST-21 was mapped on the long arm of chromosome 1B, and that conferring resistance to all four races was mapped on the long arm of chromosome 5B. We temporarily designate the gene on 1BL as YrExp1 and the gene on 5BL as YrExp2. Polymorphism of at least one of the two markers flanking YrExp2 was detected in 91% of the 44 tested wheat genotypes, suggesting that they would be useful in marker-assisted selection for combining the gene with other resistance genes into many other wheat cultivars. Knowledge of these genes will be useful to understand recent virulence changes in the pathogen populations.  相似文献   

4.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars is the most effective approach to control the disease, but only a few genes confer effective all-stage resistance against the current populations of the pathogen worldwide. It is urgent to identify new genes for diversifying sources of resistance genes and for pyramiding genes for different types of resistance in order to achieve high levels of durable resistance for sustainable control of stripe rust. The common spring wheat genotype ‘PI 181434’, originally from Afghanistan, was resistant in all greenhouse and field tests in our previous studies. To identify the resistance gene(s) PI 181434 was crossed with susceptible genotype ‘Avocet Susceptible’. Adult plants of 103 F2 progeny were tested in the field under the natural infection of P. striiformis f. sp. tritici. Seedlings of the parents, F2 and F3 were tested with races PST-100 and PST-127 of the pathogen under controlled greenhouse conditions. The genetic study showed that PI 181434 has a single dominant gene conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the gene. A linkage map of 8 RGAP and 2 SSR markers was constructed for the gene using data from the 103 F2 plants and their derived F3 lines tested in the greenhouse. Amplification of the complete set of nulli-tetrasomic lines and selected ditelosomic lines of Chinese Spring with an RGAP marker and the two SSR markers mapped the gene on the long arm of chromosome 3D. Because it is the first gene for stripe rust resistance mapped on chromosome 3DL and different from all previously named Yr genes, the gene in PI 181434 was designated Yr45. Polymorphism rates of the two closest flanking markers, Xwgp115 and Xwgp118, in 45 wheat genotypes were 73.3 and 82.2%, respectively. Single nucleotide polymorphisms (SNPs) were identified in the eight wheat genotypes sharing both flanking markers. The RGAP markers and potential SNP markers should be useful in incorporating the gene into wheat cultivars and in pyramiding it with other genes for durable resistance.  相似文献   

5.
 An intervarietal molecular marker map covering most of the nuclear genome was developed in Triticum aestivum. One hundred and six androgenetic-derived doubled haploid lines obtained from the F1 between monosomics of ‘Chinese Spring’ and ‘Courtot’ were analysed for genetic mapping. The map covered 18 of the 21 chromosomes with an identical distribution of markers in the A and B genome, and only small segments of the D genome. Distorted markers were mapped using Bailey’s 2-point method and revealed skewed regions on 1A, 1DS, 2A, 2B, 4AS and 6B. Comparison with a wide cross [‘Opata’×Synthetic hexaploid (T. tauschii/‘Altar 84’)] showed colinearity for markers on homologous chromosomes, but revealed a large proportion (25%) of markers mapped on non-homoeologous chromosomes, i. e. heterologous markers. The origin of the material and distortion segregation are discussed with particular emphasis on investigations of D-genome markers. Received: 2 May 1996 / Accepted: 2 August 1996  相似文献   

6.
 A collection of 200 wheat (Triticum aestivum L. cv ‘Chinese Spring’) cytogenetic stocks (nullisomic, tetrasomic, nulli-tetrasomic, ditelosomic and deletion lines, addition and substitution stocks from intra- and inter-specific crosses) was utilized to determine the proteins encoded by some of the wheat and barley dehydrin genes, using a western blot procedure. Proteins extracted from seeds were reacted with antibodies that recognize dehydrins in a wide range of plants, including wheat and barley. Proteins encoded by dehydrin loci in chromosome arms 4DS, 5BL and 6AL of ‘Chinese Spring’ wheat were assigned by this method. There was also evidence of a regulatory factor on 5B in the vicinity of the dhn genes, and on 5H in wheat-barley addition lines, that is required for a normal level of expression of seed dehydrins in hexaploid wheat. Further understanding of this putative regulatory factor would be helpful for the interpretation of linkage studies that may relate dehydrin gene expression to phenotypes such as dehydration, salinity or low-temperature tolerance. Received: 27 August 1997 / Accepted: 4 February 1998  相似文献   

7.
 The complex Mla locus of barley determines resistance to the powdery mildew pathogen Erysiphe graminis f. sp. hordei. With a view towards gene isolation, a population consisting of 950 F2 individuals derived from a cross between the near-isogenic lines ‘P01’ (Mla1) and ‘P10’ (Mla12) was used to construct a high-resolution map of the Mla region. A fluorescence-based AFLP technique and bulked segregant analysis were applied to screen for polymorphic, tightly linked AFLP markers. Three AFLP markers were selected as suitable for a chromosome-landing strategy. One of these AFLP markers and a closely linked RFLP marker were converted into sequence-specific PCR markers. PCR-based screening of approximately 70 000 yeast artificial chromosome (YAC) clones revealed three identical YACs harbouring the Mla locus. Terminal insert sequences were obtained using inverse PCR. The derived STS marker from the right YAC end-clone was mapped distal to the Mla locus. Received: 17 July 1998 / Accepted: 9 August 1998  相似文献   

8.
Molecular mapping of stem and leaf rust resistance in wheat   总被引:7,自引:0,他引:7  
Stem rust caused by Puccinia graminis f. sp. tritici Eriks and Henn and leaf rust caused by Puccinia triticina Rob. ex Desm. are major constraints to wheat production worldwide. In the present study, F4-derived SSD population, developed from a cross between Australian cultivars ‘Schomburgk’ and ‘Yarralinka’, was used to identify molecular markers linked to rust resistance genes Lr3a and Sr22. A total of 1,330 RAPD and 100 ISSR primers and 33 SSR primer pairs selected ob the basis of chromosomal locations of these genes were used. The ISSR marker UBC 840540 was found to be linked with Lr3a in repulsion at a distance of 6.0 cM. Markers cfa2019 and cfa2123 flanked Sr22 at a distance of 5.9 cM (distal) and 6.0 cM (proximal), respectively. The use of these markers in combination would predict the presence or absence of Sr22 in breeding populations. A previously identified PCR-based diagnostic marker STS638 linked to Lr20 was validated in this population. This marker showed a recombination value of 7.1 cM with Lr20.  相似文献   

9.
A single nucleotide polymorphism in the wheat powdery mildew (Blumeria graminis f. sp. tritici) cytochrome b gene is responsible for resistance to inhibitors of the quinol outer binding site of the cytochrome bc1 complex (QoI) fungicides. Analysis of a partial sequence of the cytochrome b gene from field isolates resistant and sensitive to QoI fungicides revealed the same point mutation in barley powdery mildew (B. graminis f. sp. hordei). Analysis of 118 and 40 barley powdery mildew isolates using a cleaved amplified polymorphic sequence assay and denaturing high performance liquid chromatography, respectively, confirmed that this single nucleotide polymorphism also confers resistance to QoI fungicides in barley powdery mildew.  相似文献   

10.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred control of the disease. The spring wheat cultivar ‘Alpowa’ has both race-specific, all-stage resistance and non-race-specific, high-temperature adult-plant (HTAP) resistances to stripe rust. To identify genes for the stripe rust resistances, Alpowa was crossed with ‘Avocet Susceptible’ (AVS). Seedlings of the parents, and F1, F2 and F3 progeny were tested with races PST-1 and PST-21 of P. striiformis f. sp. tritici under controlled greenhouse conditions. Alpowa has a single partially dominant gene, designated as YrAlp, conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrAlp. A linkage group of five RGAP markers and two SSR markers was constructed for YrAlp using 136 F3 lines. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers Xwgp47 and Xwgp48 and the two SSR markers indicated that YrAlp is located on the short arm of chromosome 1B. To map quantitative trait loci (QTLs) for the non-race-specific HTAP resistance, the parents and 136 F3 lines were tested at two sites near Pullman and one site near Mount Vernon, Washington, under naturally infected conditions. A major HTAP QTL was consistently detected across environments and was located on chromosome 7BL. Because of its chromosomal location and the non-race-specific nature of the HTAP resistance, this gene is different from previously described genes for adult-plant resistance, and is therefore designated Yr39. The gene contributed to 64.2% of the total variation of relative area under disease progress curve (AUDPC) data and 59.1% of the total variation of infection type data recorded at the heading-flowering stages. Two RGAP markers, Xwgp36 and Xwgp45 with the highest R 2 values were closely linked to Yr39, should be useful for incorporation of the non-race-specific resistance gene into new cultivars and for combining Yr39 with other genes for durable and high-level resistance.  相似文献   

11.
 A PCR-based marker (E20570) linked to the gene Gm4t, which confers resistance to a dipteran pest gall midge (Orseolia oryzae), has been mapped using the restriction fragment length polymorphism (RFLP) technique in rice. Gm4t is a dominant resistance gene. We initially failed to detect useful polymorphism for this marker in a F3 mapping population derived from a cross between two indica parents, ‘Abhaya’בShyamala’, with as many as 35 restriction enzymes. ‘Abhaya’ carries the resistance gene Gm4t and ‘Shyamala’ is susceptible to gall midge. Subsequently, E20570 was mapped using another mapping population represented by a F2 progeny from a cross between ‘Nipponbare’, a japonica variety, and ‘Kasalath’, an indica variety, in which the gene Gm4t was not known to be present. Gm4t mapped onto chromosome 8 between markers R1813 and S1633B. Our method, thus, presents an alternative way of mapping genes which otherwise would be difficult to map because of a lack of polymorphism between closely related parents differing in desired agronomic traits. Received: 1 April 1997 / Accepted: 13 May 1997  相似文献   

12.
Huang XQ  Röder MS 《Genetica》2011,139(9):1179-1187
Genetic maps of wheat chromosome 1D consisting of 57 microsatellite marker loci were constructed using Chinese Spring (CS) × Chiyacao F2 and the International Triticeae Mapping Initiative (ITMI) recombinant inbred lines (RILs) mapping populations. Marker order was consistent, but genetic distances of neighboring markers were different in two populations. Physical bin map of 57 microsatellite marker loci was generated by means of 10 CS 1D deletion lines. The physical bin mapping indicated that microsatellite marker loci were not randomly distributed on chromosome 1D. Nineteen of the 24 (79.2%) microsatellite markers were mapped in the distal 30% genomic region of 1DS, whereas 25 of the 33 (75.8%) markers were assigned to the distal 59% region of 1DL. The powdery mildew resistance gene Pm24, originating from the Chinese wheat landrace Chiyacao, was previously mapped in the vicinity of the centromere on the short arm of chromosome 1D. A high density genetic map of chromosome 1D was constructed, consisting of 36 markers and Pm24, with a total map length of 292.7 cM. Twelve marker loci were found to be closely linked to Pm24. Pm24 was flanked by Xgwm789 (Xgwm603) and Xbarc229 with genetic distances of 2.4 and 3.6 cM, respectively, whereas a microsatellite marker Xgwm1291 co-segregated with Pm24. The microsatellite marker Xgwm1291 was assigned to the bin 1DS5-0.70-1.00 of the chromosome arm 1DS. It could be concluded that Pm24 is located in the ‘1S0.8 gene-rich region’, a highly recombinogenic region of wheat. The results presented here would provide a start point for the map-based cloning of Pm24.  相似文献   

13.
Clarke JA 《Plant physiology》1981,67(1):188-189
Host cell wall hydroxyproline enhancement was observed in the successful development of the parasite Erysiphe graminis DC. f. sp. tritici em Marchal (MS-1) on wheat (em Thell). Hydroxyproline enhancement, which was observed only in susceptible hosts, was detected as early as 25 hours after infection. This observation suggests that the increase in cell wall hydroxyproline is a primary event in the host-pathogen interaction of Erysiphe graminis in wheat.  相似文献   

14.
Resistance to causal agents of diseases is an important varietal characteristic that influences the management practice of crop plants and thus production costs of commodities. At present, almost all European barley varieties possess at least one major gene for resistance to powdery mildew. After hybridizing selected parental varieties, resistance genes often segregate in subsequent generations and, therefore, some varieties comprise lines that differ in the number or combinations of resistance genes. The objective of this research was to describe the various methods available for postulating resistance genes to pathogens in heterogeneous varieties using resistance to powdery mildew of barley as an example. Four spring barleys (‘Orbit’, ‘Malva’, ‘Tocada’ and CLE 233), and a six-row variety of winter barley, F 12872, were screened. For postulating resistance genes, several testing procedures and many Blumeria graminis f.sp. hordei isolates were used. Minimum amounts of seed were determined and different methods of obtaining homogeneous seed samples from heterogeneous varieties were compared. It was found that ‘Orbit’ and ‘Malva’ are composed of three and ‘Tocada’, CLE 233 and F 12872 of two lines with different resistances to powdery mildew. Problems of postulating resistance genes in heterogeneous varieties and the advantages of testing leaf segments instead of young plants are discussed.  相似文献   

15.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases worldwide in areas with cool or maritime climates. Wild emmer (Triticum turgidum var. dicoccoides) is an important potential donor of disease resistances and other traits for common wheat improvement. A powdery mildew resistance gene was transferred from wild emmer accession G-303-1M to susceptible common wheat by crossing and backcrossing, resulting in inbred line P63 (Yanda1817/G-303-1 M//3*Jing411, BC2F6). Genetic analysis of an F2 population and the F2:3 families developed from a cross of P63 and a susceptible common wheat line Xuezao showed that the powdery mildew resistance in P63 was controlled by a single recessive gene. Molecular markers and bulked segregant analysis were used to characterize and map the powdery mildew resistance gene. Nine genomic SSR markers (Xbarc7, Xbarc55, Xgwm148, Xgwm257, Xwmc35, Xwmc154, Xwmc257, Xwmc382, Xwmc477), five AFLP-derived SCAR markers (XcauG3, XcauG6, XcauG10, XcauG20, XcauG22), three EST–STS markers (BQ160080, BQ160588, BF146221) and one RFLP-derived STS marker (Xcau516) were linked to the resistance gene, designated pm42, in P63. pm42 was physically mapped on chromosome 2BS bin 0.75–0.84 using Chinese Spring nullisomic-tetrasomic, ditelosomic and deletion lines, and was estimated to be more than 30 cM proximal to Xcau516, a RFLP-derived STS marker that co-segregated with the wild emmer-derived Pm26 which should be physically located in 2BS distal bin 0.84–1.00. pm42 was highly effective against 18 of 21 differential Chinese isolates of B. graminis f. sp. tritici. The closely linked molecular markers will enable the rapid transfer of pm42 to wheat breeding populations thus adding to their genetic diversity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. W. Hua, Z. Liu, and J. Zhu contributed equally to this work.  相似文献   

16.
 We used graphical genotyping and linkage analyses with molecular markers to determine the chromosomal location of the rice stripe disease resistance gene, Stv-b i . The stripe resistance gene from the indica rice (Oryza sativa) cv ‘Modan’ was introgressed into several Japanese rice varieties. We found 4 RFLP markers in ‘Modan’, five susceptible parental rice varieties (‘Norin No. 8’, ‘Sachihikari’, ‘Kanto No. 98’, ‘Hokuriku No.103’ and ‘Koganebare’) and four resistant progeny varieties (‘St. No. 1’, ‘Aichi No. 6’, ‘Aoisora’ and ‘Asanohikari’). Graphical genotyping of the resistant progeny revealed a chromosomal segment ascribable to ‘Modan’ and associated with stripe resistance. The chromosomal segment from ‘Modan’ was located at 35.85 cM on chromosome 11. Linkage analysis using 120 F2 individuals from a cross between ‘Koshihikari’ (susceptible) and ‘Asanohikari’ (resistant) revealed another 8 RFLP markers in the same chromosome. We performed a bioassay for rice stripe resistance in F3 lines of the F2 individuals using infective small brown planthoppers and identified an 1.8-cM segment harboring the rice stripe disease resistance gene, Stv-b i , between XNpb220 and XNpb257/ XNpb254. Furthermore, Stv-b i was linked by 0.0 cM to a RFLP marker, ST10, which was developed on the basis of the results of RAPD analysis. These DNA markers near the Stv-b i locus may be useful in marker-assisted selection and map-based cloning of the Stv-b i gene. Received: 26 September 1997 / Accepted: 4 November 1997  相似文献   

17.
In this work, we have identified a chimeric pentatricopeptide repeat (PPR)-encoding gene cosegregating with the fertility restorer phenotype for cytoplasmic male sterility (CMS) in radish. We have constructed a CMS-Rf system consisting of sterile line ‘9802A2’, maintainer line ‘9802B2’ and restorer line ‘2007H’. F2 segregating population analysis indicated that male fertility is restored by a single dominant gene in the CMS-Rf system described above. A PPR gene named Rfoc was found in the restorer line ‘2007H’. It cosegregated with the fertility restorer in the F2 segregating population which is composed of 613 fertile plants and 187 sterile plants. The Rfoc gene encodes a predicted protein 687 amino acids in length, comprising 16 PPR domains and with a putative mitochondrial targeting signal. Sequence alignment showed that recombination between the 5′ region of Rfob (EU163282) and the 3′ region of PPR24 (AY285675) resulted in Rfoc, indicating a recent unequal crossing-over event between Rfo and PPR24 loci at a distance of 5.5 kb. The sterile line ‘9802A2’ contains the rfob gene. In the F2 population, Rfoc and rfob were observed to fit a segregation ratio 1:2:1 showing that Rfoc was allelic to Rfo. Previously we have reported that a fertile line ‘2006H’, which carries the recessive rfob gene, is able to restore the male fertility of CMS line ‘9802A1’ (Wang et al. in Theor Appl Genet 117:313–320, 2008). However, here when conducting a cross between the fertile line ‘2006H’ and CMS line ‘9802A2, the resulting plants were male sterile, which shows that sterile line ‘9802A2’ possesses a different nuclear background compared to ‘9802A1’. Based on these results, the genetic model of fertility restoration for radish CMS is also discussed.  相似文献   

18.
Hexaploid wheat (Triticum aestivum L.) originated about 8,000 years ago from the hybridization of tetraploid wheat with diploid Aegilops tauschii Coss. containing the D-genome. Thus, the bread wheat D-genome is evolutionary young and shows a low degree of polymorphism in the bread wheat gene pool. To increase marker density around the durable leaf rust resistance gene Lr34 located on chromosome 7DS, we used molecular information from the orthologous region in rice. Wheat expressed sequence tags (wESTs) were identified by homology with the rice genes in the interval of interest, but were monomorphic in the ‘Arina’ × ‘Forno’ mapping population. To derive new polymorphic markers, bacterial artificial chromosome (BAC) clones representing a total physical size of ∼1 Mb and belonging to four contigs were isolated from Ae. tauschii by hybridization screening with wheat ESTs. Several BAC clones were low-pass sequenced, resulting in a total of ∼560 kb of sequence. Ten microsatellite sequences were found, and three of them were polymorphic in our population and were genetically mapped close to Lr34. Comparative analysis of marker order revealed a large inversion between the rice genome and the wheat D-genome. The SWM10 microsatellite is closely linked to Lr34 and has the same allele in the three independent sources of Lr34: ‘Frontana’, ‘Chinese Spring’, and ‘Forno’, as well in most of the genotypes containing Lr34. Therefore, SWM10 is a highly useful marker to assist selection for Lr34 in breeding programs worldwide.  相似文献   

19.
Diplocarpon rosae is the causal agent of rose blackspot, one of the most severe diseases of field-grown roses. The genetics of resistance to this pathogen was investigated in crosses between tetraploid rose genotypes. The hybrid breeding line 91/100-5, which exhibits a broad resistance to all isolates tested so far, was selfed to produce an F2 population, backcrossed to the susceptible tetraploid variety ‘Caramba’ and crossed to the susceptible varieties ‘Heckenzauber’, ‘Pariser Charme’ and ‘Elina’. Infection experiments resulted in segregation ratios consistent with the presence of a single dominant resistance locus in the duplex configuration in the hybrid 91/100-5. This suggests, together with previous data on the race structure of the fungus, a “gene-for-gene” type of interaction in the pathosystem Diplocarpon/Rosa. We propose to designate this gene Rdr1, which is the first resistance gene described in the genus Rosa. The advantages and limitations of such an interaction type for future rose breeding programmes and for marker-assisted selection strategies are discussed. Received: 29 August 1997 / Accepted: 19 September 1997  相似文献   

20.
 Genomic in situ hybridization (GISH) was used to distinguish autosyndetic from allosyndetic pairing in the hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum cv ‘Chinese Spring’ (CS). All hybrids showed high autosyndetic pairing frequencies among wheat chromosomes and among Thinopyrum chromosomes. The high autosyndetic pairing frequencies among wheat chromosomes in both hybrids suggested that Th. intermedium and Th. ponticum carry promoters for homoeologous chromosome pairing. The higher frequencies of autosyndetic pairing among Thinopyrum chromosomes than among wheat chromosomes in both hybrids indicated that the relationships among the three genomes of Th. intermedium and among the five genomes of Th. ponticum are closer than those among the three genomes of T. aestivum. Received: 19 September 1996 / Accepted: 18 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号