首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electrophysiological changes after a single session of neurofeedback training (↑SMR/↓Theta) and its effects on executive attention during a dichotic listening test with forced attentional procedures were measured in a sample of 20 healthy women. A pre–post moment test double blind design, with the inclusion of a group receiving sham neurofeedback, allowed for minimization of alien influences. The interaction of Moment × Group was significant, indicating an enhancement of SMR band after the real neurofeedback. The dichotic listening scores were correlated with the amplitude of Beta band in baseline conditions. The performance on the forced left attentional condition in dichotic listening was significantly improved and correlated positively with the post-training enhancement of the SMR band. The sham neurofeedback group also improved DL scores, so a clear affirmation about the benefits of neurofeedback training over cognitive performance could not be unambiguously established. It is concluded that the protocol showed a good independence and acceptable trainability in modifying the EEG results, but there was limited interpretability regarding cognitive outcomes.  相似文献   

2.
It is generally accepted that children with attention-deficit/hyperactivity disorder (ADHD) have poor motor control, especially in bimanual coordination tasks. Such children characteristically have impaired fine motor ability, problems with force control, and poor motor coordination. They are at particular risk of loss of motor control and reduced bimanual coordination. We tested whether, compared to a control condition, neurofeedback training (NFT) could improve bimanual coordination among children with ADHD. 20 Children with ADHD (mean age 7.9 years; SD 2.11) were randomly assigned either to NFT or to a control condition. All participants completed a bimanual coordination test at the following time points: baseline, assessment 1, assessment 2, assessment 3, and again 12 session later at posttest. NFT consisted of Sensory Motor Rhythm (SMR) training to achieve increased SMR in C3 and C4, while participants in the control condition were under mock NFT conditions. Bimanual coordination accuracy and consistency improved from baseline to completion of the intervention (significant Time effect), but in the NFT condition (significant time?×?group interaction). Compared to the control condition, the NFT group had fewer errors in both patterns of bimanual coordination (significant Group effect). Among children with ADHD, SMR neurofeedback training (NFT) led to significant improvements in a bimanual coordination task. The SMR NFT thus appears to have the potential to improve and enhance the motor control of ADHD patients.  相似文献   

3.
In ADHD several EEG biomarkers have been described before, with relevance to treatment outcome to stimulant medication. This pilot-study aimed at personalizing neurofeedback treatment to these specific sub-groups to investigate if such an approach leads to improved clinical outcomes. Furthermore, pre- and post-treatment EEG and ERP changes were investigated in a sub-group to study the neurophysiological effects of neurofeedback. Twenty-one patients with ADHD were treated with QEEG-informed neurofeedback and post-treatment effects on inattention (ATT), hyperactivity/impulsivity (HI) and comorbid depressive symptoms were investigated. There was a significant improvement for both ATT, HI and comorbid depressive complaints after QEEG-informed neurofeedback. The effect size for ATT was 1.78 and for HI was 1.22. Furthermore, anterior individual alpha peak frequency (iAPF) demonstrated a strong relation to improvement on comorbid depressive complaints. Pre- and post-treatment effects for the SMR neurofeedback sub-group exhibited increased N200 and P300 amplitudes and decreased SMR EEG power post-treatment. This pilot study is the first study demonstrating that it is possible to select neurofeedback protocols based on individual EEG biomarkers and suggests this results in improved treatment outcome specifically for ATT, however these results should be replicated in further controlled studies. A slow anterior iAPF at baseline predicts poor treatment response on comorbid depressive complaints in line with studies in depression. The effects of SMR neurofeedback resulted in specific ERP and EEG changes.  相似文献   

4.
Gilles de la Tourette syndrome (TS) is characterized by motor and vocal tic manifestations, often accompanied by behavioral, cognitive and affective dysfunctions. Electroencephalography of patients with TS has revealed reduced Sensorimotor Rhythm (SMR) and excessive fronto-central Theta activity, that presumably underlie motor and cognitive disturbances in TS. Some evidence exists that neurofeedback (NFB) training aimed at enhancing SMR amplitude is effective for reducing tics. The present report is an uncontrolled single case study where a NFB training protocol, involving combined SMR uptraining/Theta downtraining was delivered to a 17-year-old male with TS. After sixteen SMR-Theta sessions, six additional sessions were administered with SMR uptraining alone. SMR increase was better obtained when SMR uptraining was administered alone, whereas Theta decrease was observed after both trainings. The patient showed a reduction of tics and affective symptoms, and improvement of cognitive performance after both trainings. Overall, these findings suggest that Theta decrease might account for some clinical effects seen in conjunction with SMR uptraining. Future studies should clarify the feasibility of NFB protocols for patients with TS beyond SMR uptraining alone.  相似文献   

5.
The challenges of research into brain–computer interfaces (BCI) include significant individual differences in learning pace and in the effective operation of BCI devices. The use of neurofeedback training is a popular method of improving the effectiveness BCI operation. The purpose of the present study was to determine to what extent it is possible to improve the effectiveness of operation of sensorimotor rhythm-based brain–computer interfaces (SMR-BCI) by supplementing user training with elements modifying the characteristics of visual feedback. Four experimental groups had training designed to reinforce BCI control by: visual feedback in the form of dummy faces expressing emotions (Group 1); flashing the principal elements of visual feedback (Group 2) and giving both visual feedbacks in one condition (Group 3). The fourth group participated in training with no modifications (Group 4). Training consisted of a series of trials where the subjects directed a ball into a basket located to the right or left side of the screen. In Group 1 a schematic image a face, placed on the controlled object, showed various emotions, depending on the accuracy of control. In Group 2, the cue and targets were flashed with different frequency (4 Hz) than the remaining elements visible on the monitor. Both modifications were also used simultaneously in Group 3. SMR activity during the task was recorded before and after the training. In Group 3 there was a significant improvement in SMR control, compared to subjects in Group 2 and 4 (control). Differences between subjects in Groups 1, 2 and 4 (control) were insignificant. This means that relatively small changes in the training procedure may significantly impact the effectiveness of BCI control. Analysis of behavioural data acquired from all participants at training showed greater effectiveness in directing the object towards the right side of the screen. Subjects with the greatest improvement in SMR control showed a significantly lower difference in the accuracy of rightward and leftward movement than others.  相似文献   

6.
There is a growing interest in the application of psychophysiological signals in more applied settings. Unidirectional sensory motor rhythm-training (SMR) has demonstrated consistent effects on sleep. In this study the main aim was to analyze to what extent participants could gain voluntary control over sleep-related parameters and secondarily to assess possible influences of this training on sleep metrics. Bidirectional training of SMR as well as heart rate variability (HRV) was used to assess the feasibility of training these parameters as possible brain computer interfaces (BCI) signals, and assess effects normally associated with unidirectional SMR training such as the influence on objective and subjective sleep parameters. Participants (n?=?26) received between 11 and 21 training sessions during 7 weeks in which they received feedback on their personalized threshold for either SMR or HRV activity, for both up- and down regulation. During a pre- and post-test a sleep log was kept and participants used a wrist actigraph. Participants were asked to take an afternoon nap on the first day at the testing facility. During napping, sleep spindles were assessed as well as self-reported sleep measures of the nap. Although the training demonstrated successful learning to increase and decrease SMR and HRV activity, no effects were found of bidirectional training on sleep spindles, actigraphy, sleep diaries, and self-reported sleep quality. As such it is concluded that bidirectional SMR and HRV training can be safely used as a BCI and participants were able to improve their control over physiological signals with bidirectional training, whereas the application of bidirectional SMR and HRV training did not lead to significant changes of sleep quality in this healthy population.  相似文献   

7.
Our minds are continuously alternating between external attention (EA) and mind wandering (MW). An appropriate balance between EA and MW is important for promoting efficient perceptual processing, executive functioning, decision-making, auto-biographical memory, and creativity. There is evidence that EA processes are associated with increased activity in high-frequency EEG bands (e.g., SMR), contrasting with the dominance of low-frequency bands during MW (e.g., Theta). The aim of the present study was to test the effects of two distinct single session real-time EEG (rtEEG) protocols (SMR up-training/Theta down-training—SMR?Theta?; Theta up-training/SMR down-training—Theta?SMR?) on EA and MW processes. Thirty healthy volunteers were randomly assigned to one of two rtEEG training protocols (SMR?Theta?; Theta?SMR?). Before and after the rtEEG training, participants completed the attention network task (ANT) along with several MW measures. Both training protocols were effective in increasing SMR (SMR?Theta?) and theta (Theta?SMR?) amplitudes but not in decreasing the amplitude of down-trained bands. There were no significant effects of the rtEEG training in either EA or MW measures. However, there was a significant positive correlation between post-training SMR increases and the use of deliberate MW (rather than spontaneous) strategies. Additionally, for the Theta?SMR? protocol, increase in post-training Theta amplitude was significantly associated with a decreased efficiency in the orientation network.  相似文献   

8.

Objective

Ginger effects on (experimental) nausea have been described, but also strong placebo effects and sex differences when nausea is involved. The “balanced placebo design” has been proposed to allow better separation of drug and placebo effects.

Methods

Sixty-four healthy participants (32 women) were randomly assigned to receive an antiemetic ginger preparation or placebo, and half of each group was told to have received drug or placebo. They were exposed to 5×2 min body rotations to induce nausea. Subjective symptoms and behavioral (rotation tolerance, head movements) and physiological measures (electrogastrogram, cortisol) were recorded. Groups were balanced for sex of participants and experimenters.

Results

Ginger and the information given did not affect any outcome measure, and previous sex differences could not be confirmed. Adding the experimenters revealed a significant four-factorial interaction on behavioral but not on subjective or physiological measures Men who received placebo responded to placebo information when provided by the male experimenter, and to ginger information when provided by the female experimenter. This effect was not significant in women.

Conclusion

The effects of an antiemetic drug and provided information interact with psychosocial variables of participants and experimenters in reports of nausea.  相似文献   

9.
In the present study, we show for the first time that motor imagery of swallowing, which is defined as the mental imagination of a specific motor act without overt movements by muscular activity, can be successfully used as mental strategy in a neurofeedback training paradigm. Furthermore, we demonstrate its effects on cortical correlates of swallowing function. Therefore, N = 20 healthy young adults were trained to voluntarily increase their hemodynamic response in swallowing related brain areas as assessed with near-infrared spectroscopy (NIRS). During seven training sessions, participants received either feedback of concentration changes in oxygenated hemoglobin (oxy-Hb group, N = 10) or deoxygenated hemoglobin (deoxy-Hb group, N = 10) over the inferior frontal gyrus (IFG) during motor imagery of swallowing. Before and after the training, we assessed cortical activation patterns during motor execution and imagery of swallowing. The deoxy-Hb group was able to voluntarily increase deoxy-Hb over the IFG during imagery of swallowing. Furthermore, swallowing related cortical activation patterns were more pronounced during motor execution and imagery after the training compared to the pre-test, indicating cortical reorganization due to neurofeedback training. The oxy-Hb group could neither control oxy-Hb during neurofeedback training nor showed any cortical changes. Hence, successful modulation of deoxy-Hb over swallowing related brain areas led to cortical reorganization and might be useful for future treatments of swallowing dysfunction.  相似文献   

10.
The functional significance of sleep spindles for overnight memory consolidation and general learning aptitude as well as the effect of four 10-minute sessions of spindle frequency (11.6–16 Hz, sigma) neurofeedback-training on subsequent sleep spindle activity and overnight performance change was investigated. Before sleep, subjects were trained on a paired-associate word list task after having received either neurofeedback training (NFT) or pseudofeedback training (PFT).Although NFT had no significant impact on subsequent spindle activity and behavioral outcomes, there was a trend for enhanced sigma band-power during NREM (stage 2 to 4) sleep after NFT as compared to PFT. Furthermore, a significant positive correlation between spindle activity during slow wave sleep (in the first night half) and overall memory performance was revealed. The results support the view that the considerable inter-individual variance in sleep spindle activity can at least be partly explained by differences in the ability to acquire new declarative information.We conclude that the short NFT before sleep was not sufficient to efficiently enhance phasic spindle activity and/or to influence memory processing. NFT was, however, successful in increasing sigma power, presumably because sigma NFT effects become more easily evident in actually trained frequency bands than in associated phasic spindle activity.The authors contributed equally to manuscipt  相似文献   

11.
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.  相似文献   

12.
The minimization of the non-specific factors of neurofeedback (NF) is an important aspect to further advance in the understanding of the effects of these types of procedures. This paper investigates the NF effects of a single session (25 min) of individual upper alpha enhancement following a sham-controlled experimental design (19 healthy participants). We measured immediate effects after the training and 1-day lasting EEG effects (eyes closed resting state and task-related activity), as well as the event-locked EEG effects during the execution of a mental rotation task. These metrics were computed in trained (upper alpha) and non-trained EEG parameters (lower alpha and lower beta). Several cognitive functions were assessed such as working memory and mental rotation abilities. The NF group showed increased upper alpha power after training in task-related activity (not significantly sustained 1 day after) and higher pre-stimulus power during the mental rotation task. Both groups improved cognitive performance, with a more prominent improvement for the NF group, however a single session seems to be insufficient to yield significant differences between groups. A higher number of training sessions seems necessary to achieve long-lasting effects on the electrophysiology and to enhance the behavioral effects.  相似文献   

13.
The purpose of this study was to evaluate the effect of neurofeedback on depressive symptoms and electrophysiological disturbances in patients with major depressive disorder. We recruited participants suffering from depression to evaluate efficacy of left prefrontal beta with alpha/theta training. An 8-week, prospective, open-label study was undertaken. Twenty participants were recruited. The treatment protocol was twice or three times a week training of beta at F3 with alpha/theta at Pz for 8 weeks. When every visit, patients were received beta training for 30 min, and then alpha/theta training for 30 min. Baseline, 4 and 8 week scores of; the Hamilton rating scale for Depression (HAM-D), the Hamilton rating scale for Anxiety (HAM-A), the Beck Depression Inventory (BDI)-II, the Beck Anxiety Inventory (BAI), Clinical global impression-severity (CGI-S), and pre- and post-treatment resting state EEGs were compared. Interhemispheric alpha power asymmetry (A score) was computed for homologous sites F3–F4. Pre- and post-training clinical assessments revealed significant improvements in HAM–D, HAM-A, BDI, and CGI-S scores. Cumulative response rates by HAM-D were 35.0 and 75.0 % at 4 and 8 weeks, respectively, corresponding cumulative remission rates by HAM-D were 15.0 and 55.0 %, respectively. No significant differences were found between pre- and post-treatment A score. Neurofeedback treatment could improve depressive symptoms significantly. In addition, anxiety symptoms and clinical illness severity decreased significantly after neurofeedback treatment. Despite its several limitations, such as, small sample size and lack of a control group, this study suggested neurofeedback has significant effects in patients with major depressive disorder.  相似文献   

14.
Bioinformatics.ca has been hosting continuing education programs in introductory and advanced bioinformatics topics in Canada since 1999 and has trained more than 2,000 participants to date. These workshops have been adapted over the years to keep pace with advances in both science and technology as well as the changing landscape in available learning modalities and the bioinformatics training needs of our audience. Post-workshop surveys have been a mandatory component of each workshop and are used to ensure appropriate adjustments are made to workshops to maximize learning. However, neither bioinformatics.ca nor others offering similar training programs have explored the long-term impact of bioinformatics continuing education training. Bioinformatics.ca recently initiated a look back on the impact its workshops have had on the career trajectories, research outcomes, publications, and collaborations of its participants. Using an anonymous online survey, bioinformatics.ca analyzed responses from those surveyed and discovered its workshops have had a positive impact on collaborations, research, publications, and career progression.B. F. Francis Ouellette is an Education Editor for PLOS Computational Biology  相似文献   

15.
Peripheral visual performance is an important ability for everyone, and a positive inter-individual correlation is found between the peripheral visual performance and the alpha amplitude during the performance test. This study investigated the effect of alpha neurofeedback training on the peripheral visual performance. A neurofeedback group of 13 subjects finished 20 sessions of alpha enhancement feedback within 20 days. The peripheral visual performance was assessed by a new dynamic peripheral visual test on the first and last training day. The results revealed that the neurofeedback group showed significant enhancement of the peripheral visual performance as well as the relative alpha amplitude during the peripheral visual test. It was not the case in the non-neurofeedback control group, which performed the tests within the same time frame as the neurofeedback group but without any training sessions. These findings suggest that alpha neurofeedback training was effective in improving peripheral visual performance. To the best of our knowledge, this is the first study to show evidence for performance improvement in peripheral vision via alpha neurofeedback training.  相似文献   

16.
Behavioral training in neurofeedback has proven to be an essential complement to generalize the effects of pharmacological support in subjects who have attention deficit with hyperactivity disorder (ADHD). Therefore, this investigation attempts to analyze the efficacy of neurofeedback compared with pharmacological support and the combination of both. Participants were 131 students, classified into four groups: control (did not receive neurofeedback or pharmacological support), neurofeedback group, pharmacological support group, and combined group (neurofeedback + pharmacological support). Participants’ executive control and cortical activation were assessed before and after treatment. Results indicate that the combined group obtained more benefits and that the neurofeedback group improved to a greater extent in executive control than the pharmacological support group. It is concluded that this kind of training may be an alternative to stimulate activation in subjects with ADHD.  相似文献   

17.
This review provides an updated overview of the neurophysiological rationale, basic and clinical research literature, and current methods of practice pertaining to clinical neurofeedback. It is based on documented findings, rational theory, and the research and clinical experience of the authors. While considering general issues of physiology, learning principles, and methodology, it focuses on the treatment of epilepsy with sensorimotor rhythm (SMR) training, arguably the best established clinical application of EEG operant conditioning. The basic research literature provides ample data to support a very detailed model of the neural generation of SMR, as well as the most likely candidate mechanism underlying its efficacy in clinical treatment. Further, while more controlled clinical trials would be desirable, a respectable literature supports the clinical utility of this alternative treatment for epilepsy. However, the skilled practice of clinical neurofeedback requires a solid understanding of the neurophysiology underlying EEG oscillation, operant learning principles and mechanisms, as well as an in-depth appreciation of the ins and outs of the various hardware/software equipment options open to the practitioner. It is suggested that the best clinical practice includes the systematic mapping of quantitative multi-electrode EEG measures against a normative database before and after treatment to guide the choice of treatment strategy and document progress towards EEG normalization. We conclude that the research literature reviewed in this article justifies the assertion that neurofeedback treatment of epilepsy/seizure disorders constitutes a well-founded and viable alternative to anticonvulsant pharmacotherapy.  相似文献   

18.
The evolution of self‐compatibility (SC) by the loss of self‐incompatibility (SI) is regarded as one of the most frequent transitions in flowering plants. SI systems are generally characterized by specific interactions between the male and female specificity genes encoded at the S‐locus. Recent empirical studies have revealed that the evolution of SC is often driven by male SC‐conferring mutations at the S‐locus rather than by female mutations. In this study, using a forward simulation model, we compared the fixation probabilities of male vs. female SC‐conferring mutations at the S‐locus. We explicitly considered the effects of pollen availability in the population and bias in the occurrence of SC‐conferring mutations on the male and female specificity genes. We found that male SC‐conferring mutations were indeed more likely to be fixed than were female SC‐conferring mutations in a wide range of parameters. This pattern was particularly strong when pollen availability was relatively high. Under such a condition, even if the occurrence of mutations was biased strongly towards the female specificity gene, male SC‐conferring mutations were much more often fixed. Our study demonstrates that fixation probabilities of those two types of mutation vary strongly depending on ecological and genetic conditions, although both types result in the same evolutionary consequence—the loss of SI.  相似文献   

19.
The purpose of this study was to determine the effect of training of one side of the body on the muscle torques and power output on the trained and untrained side. Seventeen female and twenty-two male students were subject to a four-week knee joint power training regimen on a specially designed stand. The subjects were divided into two groups: a training group (female – N = 11 and male – N = 16) and a control group (female – N = 6 and male – N = 6). Effectiveness of power training on the stand described previously was estimated based on bilateral knee torque and power under static and isokinetic conditions. The experiment lasted for 39 days and was preceded by preliminary studies (pre-training). Control measurements in training groups were made after four weeks of training (post-training) and after the next two weeks (de-training). Power training caused an insignificant increase in force and power in both groups for the untrained leg and a significant increase in RMS EMG. Therefore, the study confirmed the hypothesis that resistance training performed in dynamic conditions can affect the contralateral limb and may also trigger delayed adaptations to training conditions during the detraining phase. Sex differences in adaptation to power training are not clear; however, the differences in gains in contralateral effects between men and women were not confirmed.  相似文献   

20.
Real-time functional magnetic resonance imaging (rtfMRI) with neurofeedback allows investigation of human brain neuroplastic changes that arise as subjects learn to modulate neurophysiological function using real-time feedback regarding their own hemodynamic responses to stimuli. We investigated the feasibility of training healthy humans to self-regulate the hemodynamic activity of the amygdala, which plays major roles in emotional processing. Participants in the experimental group were provided with ongoing information about the blood oxygen level dependent (BOLD) activity in the left amygdala (LA) and were instructed to raise the BOLD rtfMRI signal by contemplating positive autobiographical memories. A control group was assigned the same task but was instead provided with sham feedback from the left horizontal segment of the intraparietal sulcus (HIPS) region. In the LA, we found a significant BOLD signal increase due to rtfMRI neurofeedback training in the experimental group versus the control group. This effect persisted during the Transfer run without neurofeedback. For the individual subjects in the experimental group the training effect on the LA BOLD activity correlated inversely with scores on the Difficulty Identifying Feelings subscale of the Toronto Alexithymia Scale. The whole brain data analysis revealed significant differences for Happy Memories versus Rest condition between the experimental and control groups. Functional connectivity analysis of the amygdala network revealed significant widespread correlations in a fronto-temporo-limbic network. Additionally, we identified six regions--right medial frontal polar cortex, bilateral dorsomedial prefrontal cortex, left anterior cingulate cortex, and bilateral superior frontal gyrus--where the functional connectivity with the LA increased significantly across the rtfMRI neurofeedback runs and the Transfer run. The findings demonstrate that healthy subjects can learn to regulate their amygdala activation using rtfMRI neurofeedback, suggesting possible applications of rtfMRI neurofeedback training in the treatment of patients with neuropsychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号