首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electrophysiological changes after a single session of neurofeedback training (↑SMR/↓Theta) and its effects on executive attention during a dichotic listening test with forced attentional procedures were measured in a sample of 20 healthy women. A pre–post moment test double blind design, with the inclusion of a group receiving sham neurofeedback, allowed for minimization of alien influences. The interaction of Moment × Group was significant, indicating an enhancement of SMR band after the real neurofeedback. The dichotic listening scores were correlated with the amplitude of Beta band in baseline conditions. The performance on the forced left attentional condition in dichotic listening was significantly improved and correlated positively with the post-training enhancement of the SMR band. The sham neurofeedback group also improved DL scores, so a clear affirmation about the benefits of neurofeedback training over cognitive performance could not be unambiguously established. It is concluded that the protocol showed a good independence and acceptable trainability in modifying the EEG results, but there was limited interpretability regarding cognitive outcomes.  相似文献   

2.
Gilles de la Tourette syndrome (TS) is characterized by motor and vocal tic manifestations, often accompanied by behavioral, cognitive and affective dysfunctions. Electroencephalography of patients with TS has revealed reduced Sensorimotor Rhythm (SMR) and excessive fronto-central Theta activity, that presumably underlie motor and cognitive disturbances in TS. Some evidence exists that neurofeedback (NFB) training aimed at enhancing SMR amplitude is effective for reducing tics. The present report is an uncontrolled single case study where a NFB training protocol, involving combined SMR uptraining/Theta downtraining was delivered to a 17-year-old male with TS. After sixteen SMR-Theta sessions, six additional sessions were administered with SMR uptraining alone. SMR increase was better obtained when SMR uptraining was administered alone, whereas Theta decrease was observed after both trainings. The patient showed a reduction of tics and affective symptoms, and improvement of cognitive performance after both trainings. Overall, these findings suggest that Theta decrease might account for some clinical effects seen in conjunction with SMR uptraining. Future studies should clarify the feasibility of NFB protocols for patients with TS beyond SMR uptraining alone.  相似文献   

3.
Enhanced voluntary motor inhibition regularly accompanies conditioned increases in the sensorimotor rhythm (SMR), a 12–14-Hz Rolandic EEG rhythm in cats. A similar rhythm, presumably SMR, has also been identified in the human EEG. The clinical effectiveness of SMR operant conditioning has been claimed for epilepsy, insomnia, and hyperkinesis concurrent with seizure disorders. The present report attempts to follow up and replicate preliminary findings that suggested the technique's successful application to hyperkinesis uncomplicated by a history of epilepsy. SMR was defined as 12–14-Hz EEG activity in the absence of high-voltage slow-wave activity between 4 and 7 Hz. Anticipated treatment effects were indexed by systematic behavioral assessments of undirected motor activity and short attention span in the classroom. EEG and behavioral indices were monitored in four hyperkinetic children under the following six conditions: (1) No Drug, (2) Drug Only, (3) Drug and SMR Training I, (4) Drug and SMR Reversal Training, (5) Drug and SMR Training II, (6) No Drug and SMR Training. All hyperkinetic subjects were maintained on a constant drug regimen throughout the phases employing chemotherapy. Contingent increases and decreases in SMR occurred in three of four training subjects and were associated with similar changes in classroom assessments of motor inactivity. Combining medication and SMR training resulted in substantial improvements that exceeded the effects of drugs alone and were sustained with SMR training after medication was withdrawn. In contrast, these physiological and behavioral changes were absent in one highly distractible subject who failed to acquire the SMR task. Finally, pretraining levels of SMR accurately reflected both the severity of original motor deficits and the susceptibility of hyperkinetic subjects to both treatments. Although the procedure clearly reduced hyperkinetic behavior, a salient, specific therapeutic factor could not be identified due to the dual EEG contingency imposed combined with associated changes in EMG. Despite these and other qualifying factors, the findings suggested the prognostic and diagnostic value of the SMR in the disorder when overactivity rather than distractibility is the predominant behavioral deficit.  相似文献   

4.
Enhanced voluntary motor inhibition regularly accompanies conditioned increases in the sensorimotor rhythm (SMR), a 12--14-Hz Rolandic EEG rhythm in cats.A similar rhythm, presumably SMR, has also been identified in the human EEG. The clinical effectiveness of SMR operant conditioning has been claimed for epilepsy, insomnia, and hyperkinesis concurrent with seizure disorders. The present report attempts to follow up and replicate preliminary findings that suggested the technique's successful application to hyperkinesis uncomplicated by a history of epilepsy. SMR was defined as 12--14-Hz EEG activity in the absence of high-voltage slow-wave activity between 4 and 7 Hz. Anticipated treatment effects were indexed by systematic behavioral assessments of undirected motor activity and short attention span in the classroom. EEG and behavioral indices were monitored in four hyperkinetic children under the following six conditions: (1) No Drug, (2) Drug Only, (3) Drug and SMR Training I, (4) Drug and SMR Reversal Training, (5) Drug and SMR Training II, (6) No Drug and SMR Training. All hyperkinetic subjects were maintained on a constant drug regimen throughout the phases employing chemotherapy. Contingent increases and decreases in SMR occurred in three of four training subjects and were associated with similar changes in classroom assessments of motor inactivity. Combining medication and SMR training resulted in substantial improvements that exceeded the effects of drugs alone and were sustained with SMR training after medication was withdrawn. In contrast, these physiological and behavioral changes were absent in one highly distractible subject who failed to acquire the SMR task. Finally, pretraining levels of SMR accurately reflected both the seve-ity of original motor deficits and the susceptibility of hyperkinetic subjects to both treatments. Although the procedure clearly reduced hyperkinetic behavior, a salient, specific therapeutic factor could not be identified due to the dual EEG contingency imposed combined with associated changes in EMG. Despite these and other qualifying factors, the findings suggested the prognostic and diagnostic value of the SMR in the disorder when overactivity rather than distractibility is the predominant behavioral deficit.  相似文献   

5.
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12- to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4-8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.  相似文献   

6.
Six children were provided with long-term biofeedback and academic treatment for attention deficit disorders. Their symptoms were primarily specific learning disabilities, and, in some cases, there were varying degrees of hyperkinesis. The training consisted of two sessions per week for 10 to 27 months, with a gradual phase-out. Feedback was provided for either increasing 12-to 15-Hz SMR or 16- to 20-Hz beta activity. Inhibit circuits were employed for blocking the SMR or beta when either gross movement, excessive EMG, or theta (4–8 Hz) activity was present. Treatment also consisted of combining the biofeedback with academic training, including reading, arithmetic, and spatial tasks to improve their attention. All children increased SMR or beta and decreased slow EEG and EMG activity. Changes could be seen in their power spectra after training in terms of increased beta and decreased slow activity. All six children demonstrated considerable improvement in their schoolwork in terms of grades or achievement test scores. None of the children are currently on any medications for hyperkinetic behavior. The results indicate that EEG biofeedback training, if applied comprehensively, can be highly effective in helping to remediate children who are experiencing attention deficit disorders.The authors would like to thank Mr. Kevin Bianchini for his assistance in this study.  相似文献   

7.
目的: 本研究分析睡眠剥夺对个体选择性注意网络冲突效应和脑电样本熵的影响,探讨睡眠剥夺对大脑注意网络的影响。方法: 25名健康受试者参与36 h完全睡眠剥夺试验。试验于当天9:00开始,于次日21:00结束,试验采用自身前后对照设计。受试者在睡眠剥夺前后分别完成注意网络任务,同步采集受试者的脑电图。用脑电样本熵算法分析脑电图的delta、theta、alpha、beta和gamma频率段的脑电复杂度并对比各频段脑电样本熵在睡眠剥夺前、后的变化。结果: 同睡眠剥夺前比较,睡眠剥夺后与受试者的注意网络冲突效应密切相关的反应时显著下降(P<0.01),正确率显著增加(P<0.01)。脑电样本熵分析发现在beta频率段,与注意网络冲突控制相关的脑电样本熵值在睡眠剥夺后明显增大(P<0.01)。其余脑电频率段脑电样本熵未发现显著差异。结论: 表明完全睡眠剥夺后大脑的注意网络冲突效应降低,表明睡眠剥夺后执行冲突控制能力的下降。  相似文献   

8.
To replicate a previous study, 16 psychophysiological insomniacs were randomly assigned to either Theta feedback or sensorimotor rhythm (SMR) feedback. Evaluations by home sleep logs and by 3 nights in the laboratory were done before biofeedback, immediately after biofeedback, and 9 months later. Results from this study replicate previous findings. Both Theta and SMR feedback seemed effective treatments of insomnia according to home sleep logs. According to evaluations at the sleep laboratory, tense and anxious insomniacs benefited only from Theta feedback but not from SMR feedback, while those who were relaxed at intake but still could not sleep benefited only from SMR but not from Theta feedback.This research was supported by Grant No. MH24268 from NIMH. The authors would like to thank Michael Sateia, Elaine Olmstead, Molly Oldfield, and Boyd Hayes for their assistance with this paper.  相似文献   

9.
The serial application of electromyographic (EMG) and sensorimotor (SMR) biofeedback training was attempted with a 10-year-old boy presenting a triad of symptoms: an attention deficit disorder with hyperactivity, developmental reading disorder, and ocular instability. Symptom elimination was achieved, for all three aspects of the triad, following the procedure of first conditioning a decrease in EMG-monitored muscle tension and then conditioning increases in the amplitude of sensorimotor rhythm over the Rolandic cortex. The learned reduction of monitored EMG levels was accompanied by a reduction in the child's motoric activity level to below that which had been achieved by past administration of Ritalin. In addition, the attention deficit disorder with hyperactivity was no longer diagnosable following the EMG biofeedback training. The learned increase in the amplitude of monitored SMR was accompanied by remediation of the developmental reading disorder and the ocular instability. These results remained unchanged, as ascertained by follow-ups conducted over a 24-month period subsequent to the termination of biofeedback training.  相似文献   

10.
Recently, a deep impact of psychosocial effects on the outcomes of neurofeedback training was suggested. Previous findings point out an association between locus of control in dealing with technology and the individual ability to up-regulate the sensorimotor rhythm (12–15 Hz) in the EEG. Since the antecedents of locus of control in dealing with technology differ between males and females, we have investigated the effect of sex of participant and experimenter on the outcomes of neurofeedback training. Mindfulness and SMR baseline power also were assessed as possible confounding variables. Undergraduate psychology students (n?=?142) took part in a single session of neurofeedback training conducted by either male or female experimenters. Male participants as well as those female participants instructed by male experimenters were able to upregulate SMR, while female participants trained by female experimenters were not. A strong positive correlation between training outcomes and locus of control in dealing with technology was observed only in the female participants trained by female experimenters. These results are suggestive about the impact of psychosocial factors—particularly gender-related effects—on neurofeedback training outcomes and the urgent need to document it in neurofeedback studies.  相似文献   

11.
Building on recent favourable outcomes using working memory (WM) training, this study examined the behavioural and physiological effect of concurrent computer-based WM and inhibition training for children with attention-deficit hyperactivity disorder (AD/HD). Using a double-blind active-control design, 29 children with AD/HD completed a 5-week at-home training programme and pre- and post-training sessions which included the assessment of overt behaviour, resting EEG, as well as task performance, skin conductance level and event-related potentials (ERPs) during a Go/Nogo task. Results indicated that after training, children from the high-intensity training condition showed reduced frequency of inattention and hyperactivity symptoms. Although there were trends for improved Go/Nogo performance, increased arousal and specific training effects for the inhibition-related N2 ERP component, they failed to reach standard levels of statistical significance. Both the low- and high-intensity conditions showed resting EEG changes (increased delta, reduced alpha and theta activity) and improved early attention alerting to Go and Nogo stimuli, as indicated by the N1 ERP component, post-training. Despite limitations, this preliminary work indicates the potential for cognitive training that concurrently targets the interrelated processes of WM and inhibition to be used as a treatment for AD/HD.  相似文献   

12.
Standardized neurofeedback (NF) protocols have been extensively evaluated in attention-deficit/hyperactivity disorder (ADHD). However, such protocols do not account for the large EEG heterogeneity in ADHD. Thus, individualized approaches have been suggested to improve the clinical outcome. In this direction, an open-label pilot study was designed to evaluate a NF protocol of relative upper alpha power enhancement in fronto-central sites. Upper alpha band was individually determined using the alpha peak frequency as an anchor point. 20 ADHD children underwent 18 training sessions. Clinical and neurophysiological variables were measured pre- and post-training. EEG was recorded pre- and post-training, and pre- and post-training trials within each session, in both eyes closed resting state and eyes open task-related activity. A power EEG analysis assessed long-term and within-session effects, in the trained parameter and in all the sensors in the (1–30) Hz spectral range. Learning curves over sessions were assessed as well. Parents rated a clinical improvement in children regarding inattention and hyperactivity/impulsivity. Neurophysiological tests showed an improvement in working memory, concentration and impulsivity (decreased number of commission errors in a continuous performance test). Relative and absolute upper alpha power showed long-term enhancement in task-related activity, and a positive learning curve over sessions. The analysis of within-session effects showed a power decrease (“rebound” effect) in task-related activity, with no significant effects during training trials. We conclude that the enhancement of the individual upper alpha power is effective in improving several measures of clinical outcome and cognitive performance in ADHD. This is the first NF study evaluating such a protocol in ADHD. A controlled evaluation seems warranted due to the positive results obtained in the current study.  相似文献   

13.
There is accumulating evidence that computerised cognitive training of inhibitory control and/or working memory can lead to behavioural improvement in children with AD/HD. Using a randomised waitlist control design, the present study examined the effects of combined working memory and inhibitory control training, with and without passive attention monitoring via EEG, for children with and without AD/HD. One hundred and twenty-eight children (60 children with AD/HD, 68 without AD/HD) were randomly allocated to one of three training conditions (waitlist; working memory and inhibitory control with attention monitoring; working memory and inhibitory control without attention monitoring) and completed with pre- and post-training assessments of overt behaviour (from 2 sources), trained and untrained cognitive task performance, and resting EEG activity. The two active training conditions completed 25 sessions of training at home over a 4- 5-week period. Results showed significant improvements in overt behaviour for children with AD/HD in both training conditions compared to the waitlist condition as rated by a parent and other adult. Post-training improvements in the areas of spatial working memory, ignoring distracting stimuli, and sustained attention were reported for children with AD/HD. Children without AD/HD showed behavioural improvements after training. The improvements for both groups were maintained over the 6-week period following training. The passive attention monitoring via EEG had a minor effect on training outcomes. Overall, the results suggest that combined WM/IC training can result in improved behavioural control for children with and without AD/HD.  相似文献   

14.
电针对实验性癫痫发作的影响:脑电的功率谱分析   总被引:4,自引:0,他引:4  
何晓平  沈霖霖 《生理学报》1990,42(2):141-148
以电惊厥和青霉素致痫作为实验性癲痫的动物模型。采用脑电的计算机功率谱分析技术,研究了电针作用于发作过程中脑电各频段功率百分比的变化。在安静的大鼠,脑电以δ和θ频段为主,其功率主峰在δ频段。青霉素致痫和电惊厥使δ频段功率百分比下降,α和β频段功率百分比增加,主功率频段右移,总功率亦大大增强。本实验采用的电针对背景脑电活动没有明显影响。而电针加电惊厥或青霉素致痫,δ频段功率百分比复又增加,α和β频段功率百分比则下降,主功率频段又回到δ频段,总功率也显著减少。压缩功率谱阵图直观地显示了这种变化。结果提示,电针可使大鼠脑电出现同步化趋势,可能是加强了脑的抑制过程,从而抑制了癲痫发作的。  相似文献   

15.
The effects of dopamine reuptake blocker nomifensine and nonselective antagonist of dopamine receptors haloperidol on the theta rhythmicity of the medial septal neurons and hippocampal EEG were investigated in the rabbit. Bilateral intracerebroventricular infusion of nomifensine (9 micrograms in each ventriculus) produced an increase in both the rate of firing and the theta modulation of medial septal neurons; the theta power of the hippocampal EEG also augmented. The degree of neuronal theta stability (time constant of damping, tao theta) significantly increased. The frequency of rhythmic bursts in the neuronal firing also substantially elevated. The amplitude, regularity and frequency of theta waves in the hippocampal EEG also increased. The antagonist haloperidol (12.5 mg) caused the opposite effect. The theta activity of medial septal neurons and the theta power of the hippocampal EEG decreased after haloperidol injection. Theta rhythmicity of septal neurons significantly diminished, the rate of rhythmic bursts in the neuronal firing also decreased, although not substantially. The theta amplitude and regularity in the hippocampal EEG also decreased. Effects of both drugs built up rapidly and then gradually attenuated. Nomifensine infusion against the background of exposure to haloperidol provoked neither increasing neuronal firing rate, nor elevating theta activity. These finding suggest that dopaminergic system produces activation of the septohippocampal system in situations that require selective attention to functionally important information.  相似文献   

16.
In ADHD several EEG biomarkers have been described before, with relevance to treatment outcome to stimulant medication. This pilot-study aimed at personalizing neurofeedback treatment to these specific sub-groups to investigate if such an approach leads to improved clinical outcomes. Furthermore, pre- and post-treatment EEG and ERP changes were investigated in a sub-group to study the neurophysiological effects of neurofeedback. Twenty-one patients with ADHD were treated with QEEG-informed neurofeedback and post-treatment effects on inattention (ATT), hyperactivity/impulsivity (HI) and comorbid depressive symptoms were investigated. There was a significant improvement for both ATT, HI and comorbid depressive complaints after QEEG-informed neurofeedback. The effect size for ATT was 1.78 and for HI was 1.22. Furthermore, anterior individual alpha peak frequency (iAPF) demonstrated a strong relation to improvement on comorbid depressive complaints. Pre- and post-treatment effects for the SMR neurofeedback sub-group exhibited increased N200 and P300 amplitudes and decreased SMR EEG power post-treatment. This pilot study is the first study demonstrating that it is possible to select neurofeedback protocols based on individual EEG biomarkers and suggests this results in improved treatment outcome specifically for ATT, however these results should be replicated in further controlled studies. A slow anterior iAPF at baseline predicts poor treatment response on comorbid depressive complaints in line with studies in depression. The effects of SMR neurofeedback resulted in specific ERP and EEG changes.  相似文献   

17.
A large number of traffic accidents due to driver drowsiness have been under more attention of many countries. The organization of the functional brain network is associated with drowsiness, but little is known about the brain network topology that is modulated by drowsiness. To clarify this problem, in this study, we introduce a novel approach to detect driver drowsiness. Electroencephalogram (EEG) signals have been measured during a simulated driving task, in which participants are recruited to undergo both alert and drowsy states. The filtered EEG signals are then decomposed into multiple frequency bands by wavelet packet transform. Functional connectivity between all pairs of channels for multiple frequency bands is assessed using the phase lag index (PLI). Based on this, PLI-weighted networks are subsequently calculated, from which minimum spanning trees are constructed—a graph method that corrects for comparison bias. Statistical analyses are performed on graph-derived metrics as well as on the PLI connectivity values. The major finding is that significant differences in the delta frequency band for three graph metrics and in the theta frequency band for five graph metrics suggesting network integration and communication between network nodes are increased from alertness to drowsiness. Together, our findings also suggest a more line-like configuration in alert states and a more star-like topology in drowsy states. Collectively, our findings point to a more proficient configuration in drowsy state for lower frequency bands. Graph metrics relate to the intrinsic organization of functional brain networks, and these graph metrics may provide additional insights on driver drowsiness detection for reducing and preventing traffic accidents and further understanding the neural mechanisms of driver drowsiness.  相似文献   

18.
To confirm the existence of an ongoing electroencephalogram (EEG) pattern that is truly suggestive of pain, tonic heat pain was induced by small heat pulses at 1?°C above the pain threshold and compared to slightly less intense tonic non-painful heat pulses at 1?°C below the pain threshold. Twenty healthy subjects rated the sensation intensity during thermal stimulation. Possible confounding effects of attention were thoroughly controlled for by testing in four conditions: (1) focus of attention directed ipsilateral or (2) contralateral to the side of the stimulation, (3) control without a side preference, and (4) no control of attention at all. EEG was recorded via eight leads according to the 10/20 convention. Absolute power was computed for the frequency bands delta (0.5–4?Hz), theta (4–8?Hz), alpha1 (8–11?Hz), alpha2 (11–14?Hz), beta1 (14–25?Hz), and beta2 (25–35?Hz). Ratings were clearly distinct between the heat and pain conditions and suggestive for heat and pain sensations. Manipulation of attention proved to be successful by producing effects on the ratings and on the EEG activity (with lower ratings and lower EEG activity (theta, beta1, 2) over central areas for side-focused attention). During pain stimulation, lower central alpha1 and alpha2 activity and higher right-parietal and right-occipital delta power were observed compared to heat stimulation. This EEG pattern was not influenced by the manipulation of attention. Since the two types of stimuli (pain, heat) were subjectively felt differently although stimulation intensities were nearby, we conclude that this EEG pattern is clearly suggestive of pain.  相似文献   

19.
Fibromyalgia (FMS) is a chronic, painful disorder often associated with measurable deficiencies in attention. Since EEG biofeedback (EEG-BF) has been used successfully to treat attention problems, we reasoned that this modality might be helpful in the treatment of attention problems in FMS. We also speculated that improvement in central nervous system (CNS) function might be accompanied by improvement in FMS somatic symptoms. We studied fifteen FMS patients with attention problems, demonstrated by visual and auditory continuous performance testing (CPT), while completing 40 or more EEG-BF sessions. Training consisted of a “SMR protocol” that augmented 12–15 Hz brainwaves (sensory motor rhythm; SMR), while simultaneously inhibiting 4–7 Hz brainwaves (theta) and 22–30 Hz brainwaves (high beta). Serial measurements of pain, fatigue, psychological distress, morning stiffness, and tenderness were also obtained. Sixty-three FMS patients who received standard medical care, but who did not receive EEG-BF, served as controls. Visual, but not auditory, attention improved significantly (P < 0.008). EEG-BF treated subjects also showed improvement in tenderness, pain and fatigue. Somatic symptoms did not change significantly in controls. Visual attention parameters and certain somatic features of FMS appear to improve with an EEG-BF SMR protocol. EEG-BF training in FMS deserves further study.  相似文献   

20.
Eight severely epileptic patients, four males and four females, ranging in age from 10 to 29 years, were trained to increase 12–14 Hz EEG activity from the regions overlying the Rolandic area. This activity, the sensorimotor rhythm(SMR), has been hypothesized to be related to motor inhibitory processes(Sterman, 1974). The patients represented a crosssection of several different types of epilepsy, including grand mal, myoclonic, akinetic, focal, and psychomotor types. Three of them had varying degrees of mental retardation. SMR was detected by a combination of an analog filtering system and digital processing. Feedback, both auditory and/or visual, was provided whenever one-half second of 12–14-Hz activity was detected in the EEG. Patients were provided with additional feedback keyed by the output of a 4–7-Hz filter which indicated the presence of epileptiform spike activity, slow waves, or movement. Feedback for SMR was inhibited whenever slow-wave activity spikes or movement was also present. During the treatment period most of the patients showed varying degrees of improvement. Two of the patients who had been severely epileptic, having multiple seizures per week, have been seizure free for periods of up to 1 month. Other patients have developed the ability to block many of their seizures. Seizure intensity and duration have also decreased. Furthermore, the successful patients demonstrated an increase in the amount of SMR and an increase in amplitude of SMR during the training period. Spectral analyses for the EEGs were performed periodically. The effectiveness of SMR conditioning for the control of epileptic seizures is evaluated in terms of patient characteristics and type of seizures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号