首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation was performed during a 5-yr period (1974–1978) in the oligotrophic Lake Langvatn, Central Norway. In 1975 and 1976 the lake was enriched with a commercial fertilizer, In 1975 increase in phytoplankton biomass was first recorded more than three weeks after the fertilization started, despite a near fivefold increase in the primary production after fertilizer application. The mean seasonal biomass increased from c. 3500 mg wet weight m−2 in 1974 to 4400 mg in 1975. In 1976 the biomass increased to near 9600 mg −2 and the seasonal primary production to 49.0 g C m−2 (22.2 g C in 1975), despite a reduction in the nutrients added. Chrysophytes constituted the largest share of the seasonal algal biomass in all years, but in fertilization periods cryptophytes dominated in 1975 and diatoms, chlorophytes and cryptophytes in 1976. The highest biomass turnover rate was recorded during a period of cryptophyte dominance. The different biomass and production development in the fertilization years may be explained by a change in the consumer level.  相似文献   

2.
We examined the simultaneous dynamics of phytoplankton and zooplanktonin an oligotrophic lake, as well as the algal response to experimentalmanipulations of herbivore population structure and density.The seasonal succession of phytoplankton is characterized bya shift in dominance from eukaryotic species to prokaryoticcyanobacteria, as in a eutrophic lake. This unusual patternfor an oligotrophic lake is related to the release of zooplanktonphosphorus, rather than to the amount of total phosphorus. Thehighest estimated values of this released phosphorus occur duringthe co-dominance of small-sized species and of one calanoidpopulation, both under natural and experimental conditions.Our experimental results clearly reveal that a blue-green speciesreplaces non-blue-green ones when environmental conditions renderlow or intermediate values for released phosphorus, irrespectiveof the grazing pressure. The absence of predators or high levelsof released phosphorus stimulate non-blue-green growth. Theseresults agree with the successional pattern observed for thealgal assemblage under natural conditions. Nutrient recyclingplays an essential role in the maintenance of the metabolismof the pelagic system, and therefore the prevalence of a topdownregulation mechanism as proposed for such low-nutrient environmentsshould be reconsidered.  相似文献   

3.
  • 1 The underwater light climate in Loch Ness is described in terms of mixing depth (Zm) and depth of the euphoric zone (Zeu). During periods of complete mixing, Zm equates with the mean depth of the loch (132 m), but even during summer stratification the morphometry of the loch and the strong prevailing winds produce a deep thermocline and an epilimnetic mixed layer of about 30 m or greater. Hence, throughout the year the quotient Zm/Zeu is exceptionally high and the underwater light climate particularly unfavourable for phytoplankton production and growth.
  • 2 Phytoplankton biomass expressed as chlorophyll a is very low in Loch Ness, with a late summer maximum of less than 1.5 mg chlorophyll a m-3 in the upper 30 m of the water column. This low biomass and the resulting very low photosynthetic carbon fixation within the water column are evidence that a severe restraint is imposed on the rate at which phytoplankton can grow in the loch.
  • 3 The chlorophyll a content per unit of phytoplankton biovolume and the maximum, light-saturated specific rate of photosynthesis are both parameters which might be influenced by the light climate under which the phytoplankton have grown. However, values obtained from Loch Ness for both chlorophyll a content (mean 0.0045 mg mm-3) and maximum photosynthetic rate (1–4 mg C mg Chla-1 h-1) are within the range reported from other lakes.
  • 4 Laboratory bioassays with the natural phytoplankton community from Loch Ness on two occasions in late summer when the light climate in the loch is at its most favourable, suggest that even then limitation of phytoplankton growth is finely balanced between light and phosphorus limitation. Hence, for most of the year, when the light climate is less favourable, phytoplankton growth will be light limited.
  • 5 Quotients relating mean annual algal biomass as chlorophyll a (c. 0.5 mg Chla m-3) and the probable annual specific areal loading of total phosphorus (0.4–1.7 g TP m-2 yr-1) suggest that the efficiency with which phytoplankton is produced in Loch Ness per unit of TP loading is extremely low when compared with values from other Scottish lochs for which such an index has been calculated. This apparent inefficiency can be attributed to suppression of photosynthetic productivity in the water column due to the unfavourable underwater light climate.
  • 6 These several independent sources of evidence lead to the conclusion that phytoplankton development in Loch Ness is constrained by light rather than by nutrients. Loch Ness thus appears to provide an exception to the generally accepted paradigm that phytoplankton development in lakes of an oligotrophic character is constrained by nutrient availability.
  相似文献   

4.
1. Size-fractionated phytoplankton biomass was examined in relation to the hydrodynamics of tropical Lake Alchichica from 1999 to 2002.
2. Alchichica is a warm monomictic lake, in which mixing takes place from late December to early March. The lake is oligotrophic (mean total chlorophyll- a concentration 4.2 ± 4.2  μ g L−1) and its phytoplankton biomass is dominated (72.3 ± 16.4%) by large individuals (>2  μ m). The degree of dominance of the large size class (nano- and microplankton) over the small size class (picoplankton) throughout the year is mainly determined by the availability of silicate and the Si/N ratio in the hypolimnion prior to the mixing period.
3. This is the first record of an oligotrophic tropical lake dominated by large size fractions of phytoplankton. Because of this dominance, the fate of most primary productivity is rapid sedimentation to the bottom followed by decomposition that promotes an anoxic hypolimnion.
4. Our findings in tropical Lake Alchichica challenge the idea that oligotrophic waters are dominated by small phytoplankton, as has been well established for the oligotrophic ocean and temperate lakes.  相似文献   

5.
Our primary objective was to determine if a relationship existed between seasonal change in phytoplankton and high affinity for (K m) or uptake rates (V maX) of ammonium which might explain seasonal phytoplankton succession in oligotrophic ecosystems. We measured ammonium uptake using [14C]-methylamine and estimatedK m andV max using Hanes Plots at 2-week intervals during 6 months of thermal stratification in Mountain lake, Virginia (37° 22 N, 80° 32 W). Community composition, nutrient levels, and other variables were determined in all uptake experiments. A second objective was to determine if ammonium was preferentially utilized over nitrate and to characterize further the ammonium transport system.V max increased steadily from May until the end of July, each increase coinciding with major changes in the phytoplankton community. Cryptophyceans dominated in May, chlorophyceans in June and July, and cyanophyceans from the end of July to late October. With cyanophycean dominance,V max declined until chlorophyceans reestablished dominance in late October. By contrast,K m values increased from May to the end of July, but thereafter showed no correlation. Acetylene reduction experiments showed no nitrogen fixation during late summer and fall when blue-green algae were present. Preference for ammonium was implied also by negative nitrate reductase assays. Overall, the coincidence ofV max andK m values for [14C]-methylamine uptake and changing phytoplankton community structure suggests the possibility that successive algal communities may be changing as a result of specific species differences in ammonium affinity and uptake rates.  相似文献   

6.
An in situ transmission electron microscopic study of biomass samples concentrated from oligotrophic lake water revealed a variety of virus-infected microbial cells and many free viruses and virus-like particles. The most abundant group of microorganisms in screened and filtered water-column samples were 2 μm or less in diameter, and included representatives of several oligotrophic genera, Prosthecomicrobium, Ancyclobacter, Caulobacter and Hyphomicrobium. Among the prokaryotic host cells, which included both heterotrophs and autotrophs, on the basis of electron microscope observations, approximately 17% were infected with bacteriophage or bore adherent phage particles on their surfaces. Several bacterial morphotypes were observed among the prokaryotic hosts. Water samples passed through a 20-μm Nitex screen allowed us to concentrate and examine the larger host cells as well, including several species of single-celled algae and two amoeba species. The infected algal cells included those Chlorella-like in appearance, photosynthetic flagellates and others that could not be positively identified. About one-third of the eukaryotic cells were infected by viruses that were larger (150–200 nm) and structurally more complex than bacteriophages (50–60 nm). None of the viruses have been isolated, but when 0.2 μm filtrate from a biomass sample was spotted onto lawns of four representative heterotrophs and a Chlorella, the clearing observed was taken as evidence of lysis. Cyanobacterial lawns showed no plaques. Thin sections of two amoeba showed food vacuoles containing what appeared to be virus particles of a type seen in certain prokaryotic and eukaryotic cells in the biomass. Received: 26 January 1996 / Received revision: 10 July 1996 / Accepted: 5 August 1996  相似文献   

7.
Assessment of the contribution of distinct algal groups to phytoplanktonbiomass in oligotrophic lakes by marker pigments is comparedwith assessment by cell-counting biovolume estimates. Seasonalsamples from an oligotrophic alpine lake (Redon, Pyrenees) mostlyincluded species of chrysophytes, dinoflagellates, cryptophytesand chlorophytes. The chlorophyl a (Chl a) corresponding toeach algal group was estimated using HPLC pigment analyses andthe CHEMTAX program. Chl a estimates and biovolume showed asignificant correlation for all the groups during the ice-freeseason except for chlorophytes. However, some of the samplesfrom the initial phase of the ice cover presented a clear departurefrom the relationship during the ice-free period in most groups.On the other hand, the ratios between a specific marker pigmentand the biovolume of the marked algal group were significantlyconstant within the photic zone (>1% surface irradiance)for most of the pigments and groups, including chlorophytes.Nevertheless, the ratios increased and showed a large variabilityfor samples below the photic depth or below the ice cover. Theviolaxanthin-chrysophyte biovolume ratio presented an opposedtendency to other pigment-biovolume ratios, which increasedin inverse proportion to the depth of the sample. The resultsare discussed in terms of methodological limitations, acclimationresponses and species composition.  相似文献   

8.
Allometric relationships of phytoplankton communities were studied on the basis of a five-year data-set in a deep oligotrophic alpine lake in Austria. The seasonal phytoplankton succession in Mondsee is characterised by diatoms during winter mixing and a distinct metalimnetic population of Planktothrix rubescens during stratification in summer. The variation of phytoplankton photosynthetic efficiency between seasons was assessed using in situ carbon-uptake rates (5 years data) and Fast Repetition Rate Fluorometry (FRRF) (2 years data). The light-saturated, chlorophyll-specific rate of photosynthesis (P*max), irradiance at the onset of saturation (E k) and maximum light-utilisation efficiency (α*) were determined for winter mixing and summer stratification. Fluorescence-based parameters as the functional absorption cross section of Photosystem II (σ PSII) and the photochemical quantum yield (F v/F m) were additionally analysed in 2003 and 2004 to study the underlying physiological mechanisms for the variability in photosynthetic performance. Beyond their sensitivity to changing environmental conditions like thermal stratification, phytoplankton populations differ in their photosynthetic behaviour according to their size structure. Therefore Photosynthesis vs. Irradiance (P/E)-relationships were analysed in detail within a 1-year period from size fractionated cell counts, chlorophyll-a and carbon-uptake.  相似文献   

9.
The community structure of sulfate-reducing bacteria in littoral and profundal sediments of the oligotrophic Lake Stechlin (Germany) was investigated. A collection of 32 strains was isolated from the highest positive dilutions of most-probable-number series, and their partial 16S rRNA gene sequences and genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-PCR were analyzed. The strains fell into eight distinct phylogenetic lineages, and the majority (70%) showed a close affiliation to the genus Desulfovibrio. Most of the remaining strains (22%) were related to the gram-positive Sporomusa and Desulfotomaculum groups. A high redundancy of 16S rRNA gene sequences was found within several of the phylogenetic lineages. This low phylogenetic diversity was most pronounced for the subset of strains isolated from oxic sediment layers. ERIC-PCR revealed that most of the strains with identical 16S rRNA gene sequences were genetically different. Since strains with identical 16S rRNA gene sequences but different genomic fingerprints also differed considerably with respect to their physiological capabilities, the high diversity detected in the present work is very likely of ecological relevance. Our results indicate that a high diversity of sulfate-reducing bacterial strains can be recovered from the natural environment using the established cultivation media. Received: 20 April 1998 / Accepted: 12 June 1998  相似文献   

10.
Alchichica is a warm-monomictic, oligotrophic lake whose phytoplanktonic biomass is dominated by large size (average ca. 55 μm) diatoms. The fast sinking phytoplankton leads to silica, and other nutrient exportation out of the productive zone of the lake. The aim of the present study was to identify and measure the sedimentation fluxes of the diatom species and their temporal dynamics to better understand the magnitude of silica and carbon fluxes. Sediment-traps were exposed at three different depths and collected monthly. A total of 13 diatom species were observed in the traps. The maximum diatom flux was in February (304 × 106 cells m−2 day−1) related to the winter diatom bloom. The diatom silica (DSi) fluxes varied from 2.2 to 2,997 mg m−2 day−1 and the diatom carbon (DC) fluxes from 1.2 to 2,918 mg m−2 d−1. Cyclotella alchichicana was the main contributor (>98%) to the total DSi and DC fluxes. The annual diatom (15 × 109 cells m−2 year−1), DSi (147 g m−2 year−1) and DC (92 g m−2 year−1) fluxes are higher than in other aquatic ecosystems of similar or even higher trophic conditions. Our findings in Alchichica are indicative of the relevance of the phytoplankton type and size in understanding the role tropical and oligotrophic lakes play regarding silica and carbon fluxes. In addition, our results support previous findings suggesting that inland aquatic ecosystems are more important than formerly thought in processing carbon, and can, therefore, affect regional carbon balances.  相似文献   

11.
Copepod and cladoceran success in an oligotrophic lake   总被引:7,自引:0,他引:7  
Cladocerans have proved to be much less successful members ofthe Lake Tahoe limnetic community than the calanoid copepods.An analysis of temporal and spatial heterogeneity of the cladoceranBosmina longirostris and the herbivorous calanoid copepod Diaptomustyrrelli revealed important differences between the two typesof zooplankton. Although the productivity of both species islimited to varying degree by the abundance of certain algalspecies and the availability of particulate nitrogen, they differstrongly in the mechanisms responsible for mortality. Correlationanalysis suggests that B. longirosris is severely limited temporallyand spatially by predation from the omnivorous calanoid copepodEpischura nevadensis. In contrast, D. tyrrelli is not noticeablylimited by predators. Instead, abiotic seasonal events and starvationcontrol its population dynamics. Mortality and natality differencesbetween Bosmina and Diaptomus in Lake Tahoe help to explainthe general lack of success of cladocerans in oligotrophic lakes.  相似文献   

12.
Differences in enzymatic hydrolysis of dissolved organic phosphorus and subsequent phosphorus uptake were compared by using dual-labeled (gamma-P and 2-H) ATP in oligotrophic Lake Michigan and a moderately eutrophic lake in southeastern Michigan. More than 50% of the phosphate that was hydrolyzed was immediately taken up into bacterium-sized particles in the eutrophic lake and at a near-shore site in Lake Michigan. Less than 50% of the hydrolyzed phosphate was taken up into bacterium-sized particles at an offshore site in Lake Michigan. It is hypothesized that differences in size-fractionated uptake were the result of greater phosphorus utilization capacity in bacteria in habitats where loading of organic carbon is greater. Substantial isotope dilution of labeled phosphate uptake by unlabeled phosphate occurred, which implied that the phosphate was hydrolyzed extracellularly in both systems. Comparable nucleotidase activities were measured in the eutrophic lake and Lake Michigan, but the significance of the phosphate regenerated relative to particulate phosphorus pools was an order of magnitude greater in Lake Michigan. Seventy percent of the nucleotidase activity was inhibited by 100 muM phosphate in the eutrophic lake, which suggests that most hydrolysis was by phosphatase. Therefore, nucleotidase activity may be more important to phosphorus regeneration in oligotrophic habitats than phosphatase activity.  相似文献   

13.
Phytoplankton photosynthetic responses were studied in two basinsof an oligotrophic lake (Québec, Canada). which are characterizedby the absence (shallow Basin 1) and presence (deeper Basin2) of seasonal thermal stratification. Size-fractionated photosynthesiswas used to characterize changes in phytoplankton characteristicsduring periods of seasonal mixing and stratification. Seasonalvariations of P max showed size-related differences, with maximumvalues in July for the picoplankton and in November for thenanoplankton. Similar patterns of variability in  相似文献   

14.
Girdner  Scott  Mack  Jeremy  Buktenica  Mark 《Hydrobiologia》2020,847(8):1817-1830
Hydrobiologia - Chlorophyll measurements are commonly used to estimate phytoplankton biomass. However, phytoplankton readily acclimate to variations in light through a range of phenotypic...  相似文献   

15.
Population dynamics of bacterioplankton in an oligotrophic lake   总被引:4,自引:0,他引:4  
The population ecology of bacterioplankton was studied overa 3 year period in Mirror Lake, an oligotrophic lake in thenortheastern USA. Bacterial population density, biomass, andrates of biomass production in the epilimnion and hypolimnionwere examined for their relationship with several environmentalparameters. Bacterioplankton density fluctuated between 0.5and 7 x l0 bacteria ml–1, with highest values in the anoxichypolimnion. At all depths there was a trend towards a higherdensity of bacteria from spring to midsummer, followed by adecline in late summer to early autumn. Cocci tended to dominatebacterial cell shapes from winter to midsummer, after whichrod-shaped cells became most abundant. Rod-shaped cells contributedthe most to bacterioplankton biomass at all depths and timesof year. The mean annual biovolume of all bacterioplankton was0.12 µ cell–1. The mean annual areal bacterioplanktonbiomass was 11–12 mmol C m–2. The percentage ofbacterial to phytoplankton biomass per volume in summertimewas 27% in the epilimnion and 11% in the hypolimnion. Averageannual and summertime bacterial production estimated using the[3H]thymidine method was similar to previous estimates of bacterialproduction measured in Mirror Lake using other methods. Theaverage ratio of bacterial to net phytoplankton production pervolume was 0.34 in the epilimnion, and between 0.65 and 1 1.depending on depth, in the hypolimnion during summer. Of severalvariables considered in regression analyses, only temperatureexplained >50% of the variance in bacterial production inboth the hypolimnion and epilimnion. Above 14°C, however,bacterial production and growth rate in the epilimnion werenot clearly related to temperature. During the period of midsummerhypolimnetic anoxia, despite colder temperatures in the hypolimnion,bacterial production was up to 10 times greater than in theepilimnion.  相似文献   

16.
Pelagic food web processes in an oligotrophic lake   总被引:2,自引:2,他引:0  
Major pelagic carbon pathways, including primary production, release of extracellular products (EOC), bacterial production and zooplankton grazing were measured in oligotrophic Lake Almind (Denmark) and in enclosures (7 m3) subjected to artificial eutrophication. Simultaneous measurements at three days interval of carbon exchange rates and pools allowed the construction of carbon flow scenarios over a nineteen day experimental period.The flow of organic carbon was dominated by phytoplankton EOC release, which amounted from 44 to 58% of the net fixation of inorganic carbon. Gross bacterial production accounted for 33 to 75% of the primary production. The lower values of EOC release (44%) and bacterial production (33%) were found in the enclosures with added nutrients. The release of recently fixed photosynthetic products was the most important source of organic carbon to the bacterioplankton. Uptake of dissolved free amino acids was responsible for 52 to 62% of the gross bacterial production. Thus, amino acids constituted a significant proportion of the EOC. Zooplankton (< 50 µm) grazing on algae and bacteria accounted only for a minor proportion of the particulate production in May. Circumstantial evidence is presented that suggests the chrysophycean alga Dinobryon was the most important bacterial remover.The results clearly demonstrated EOC release and bacterial metabolism to be key processes in pelagic carbon cycling in this oligotrophic lake.  相似文献   

17.
Water chemistry of Lake Kalgaard in 1976–77 was characterized by low concentrations of total-CO2 and inorganic nutrients. The ionic composition resembled that of precipitation (Na>Ca>Mg >K and Cl>SO4>HCO3). The seasonal pattern of total-CO2 and PO4 was regulated by internal processes and maximum concentrations as a result of decomposition processes occurred during summer stagnation. NO3 concentrations showed the opposite pattern and were relatively high from late autumn through spring and were extremely low during summer. Total-P and PO4 increased during summer due to release from the sediment. The phytoplankton biomass of surface water was low. The water chemistry suggested a shift from N-limitation of phytoplankton during summer to P-limitation at other seasons. Maximum algal concentrations occurred at 6 m during summer, probably due to a supply of nutrients (especially NH4) from deeper layers. Phytoplankton productivity was often bimodal, with an upper maximum at depths of 0 or 2 m and a second maximum at 6 m.  相似文献   

18.
Nitrogen-fixation in the littoral benthos of an oligotrophic lake   总被引:1,自引:0,他引:1  
Blue-green algae are common in the benthos of Mirror Lake, New Hampshire (U. S. A.) — on macrophytes and on the lake bottom-and are probably responsible for the variable, sometimes high rates of N-fixation that detected by a series of acetylene-reduction assays during September and October.  相似文献   

19.
The introduction of Eurasian watermilfoil (Myriophyllum spicatum) into oligotrophic waters of high water clarity in temperate zones of North America has produced growth in excess of 6 m depth and yearly biomass approaching 1000 g m–2 dry weight. From its initial observation in Lake George, New York, USA in 1985, by 1993 milfoil had spread to 106 discrete locations within the lake. A 7-year study of one site having no management showed milfoil to grow expansively, suppressing native plant species from 20 in 1987 to 6 in 1993 with the average number of species m–2 quadrat declining from 5.5 in 1987 to less than 2 in 1993. Management of milfoil by means of hand harvesting, suction harvesting and benthic barrier has reduced the number of unmanaged sites from 106 in 1993 to 11. One year post-treatment at sites utilizing suction harvesting, showed a greater number of native species at all sites than pretreatment with a substantial reduction in milfoil biomass. At sites where benthic barrier was removed 1–2 years after installation, milfoil had recolonized 44% of grid squares within 30 days. Ninety days after barrier removal 74% of grid squares contained milfoil and one year later 71% of the grids supported milfoil. During the first year following mat removal, the average number of species m–2 peaked at 4.7 and stabilized at 4.5 during the second year. Hand harvesting by SCUBA in areas of limited milfoil growth (new sites of infestation and sites of former treatment) was found to reduce the number of milfoil plants present in subsequent years. Hand harvesting did not eliminate milfoil at any of the sites and regrowth/colonization necessitated reharvesting every 3 or more years. Results of evaluations of physical plant management techniques indicate that (1) an integrated program utilizing different techniques based on plant density reduced the growth of milfoil and (2) long term commitment to aquatic plant management is necessary since none of the techniques employed singly were found to eliminate milfoil.  相似文献   

20.
Temporal plankton dynamics in an oligotrophic maritime Antarctic lake   总被引:3,自引:0,他引:3  
  • 1 The population density, diversity and productivity of the microbial plankton in an oligotrophic maritime Antarctic lake were studied for a 15‐month period between December 1994 and February 1996.
  • 2 In the lake, concentrations of nutrients and dissolved organic carbon were uniformly low, temperature varied over a small annual range of 0.1–3 °C, and the surface was ice‐covered except during a period of approximately 6 weeks in summer.
  • 3 The total of 57 morphotypes of protozoa observed during the study is a higher taxonomic diversity than previously reported from continental Antarctic lakes, but lower than that found in more eutrophic maritime Antarctic lakes. Likewise, planktonic abundance and productivity were lower than has been reported in other lakes on Signy Island, but generally higher than those of lakes on the Antarctic continent.
  • 4 There were marked seasonal and interannual variations in planktonic population density.
  • 5 Chlorophyll a concentrations ranged from undetectable to 4.2 µg L‐1 and the greatest rate of primary productivity measured was 4.5 mg C m‐3 h‐1. The phytoplankton was dominated by small chlorophytes and chrysophytes, with phototrophic nanoflagellate abundance ranging from 1.1 × 103 to 1.2 × 107 L‐1.
  • 6 Bacterial densities of 3.6 × 108 to 1.9 × 1010 L‐1 were recorded and bacterial productivity reached a peak of 0.36 µg C L‐1 h‐1. Numbers of heterotrophic nanoflagellates between 5.0 × 104 and 1.8 × 107 L‐1, and of ciliates from undetectable to 1.1 × 104 L‐1 were observed. Naked amoebae were usually rare, but occasionally reached peaks of up to 1.5 × 103 L‐1.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号