首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To begin a successful infection, viruses must first cross the host cell plasma membrane, either by direct fusion with the membrane or by receptor-mediated endocytosis. After release into the cytoplasm those viruses that replicate in the nucleus must target their genome to that location. We examined the role of cytoplasmic transport of the canine parvovirus (CPV) capsid in productive infection by microinjecting two antibodies that recognize the intact CPV capsid into the cytoplasm of cells and also by using intracellular expression of variable domains of a neutralizing antibody fused to green fluorescence protein. The two antibodies tested and the expressed scFv all efficiently blocked virus infection, probably by binding to virus particles while they were in the cytoplasm and before entering the nucleus. The injected antibodies were able to block most infections even when injected 8 h after virus inoculation. In control studies, microinjected capsid antibodies did not interfere with CPV replication when they were coinjected with an infectious plasmid clone of CPV. Cytoplasmically injected full and empty capsids were able to move through the cytosol towards the nuclear membrane in a process that could be blocked by nocodazole treatment of the cells. Nuclear transport of the capsids was slow, with significant amounts being found in the nucleus only 3 to 6 h after injection.  相似文献   

2.
《Seminars in Virology》1994,5(2):121-132
Canine parvovirus (CPV) emerged in 1978 an a new pathogen of dogs, which spread around the world and now appears endemic in the domesticated and wild dog populations in all countries. CPV is over 98% identical in DNA sequence to viruses which had been known for many years in cats, mink and raccoons, and genetic analysis has revealed that the differences in canine host range are determined by a small number of changes in the capsid protein gene. Comparison of the atomic structures of the CPV and FPV capsids shows that the changes affecting host range and virus-specific antigenic sites are exposed on the capsid surface in three different positions within a raised region at the threefold axis of symmetry, which is also the site of major antigenic determinants on the capsid. Three types of CPV have been defined by antigenic analysis with monoclonal antibodies. The original CPV strain (called CPV type-2) was only present in nature for a few years, and by 1981 it had been largely replaced in nature by a variant of CPV (CPV type 2a), which in turn replaced between 1984 and 1990 by a further variant (CPV type-2b). Those viruses differed by less than 0.2% of their genome sequences, but in each case the replacement apparently occurred on a global scale. The true ancestry of CPV is not clear, but the apparent emergence of the new types of CPV and its subsequent evolution suggest that this is a useful model for the emergence of new viruses with extended host ranges and their continuing adaptation.  相似文献   

3.
Analysis of canine parvovirus (CPV) isolates with a panel of monoclonal antibodies showed that after 1986, most viruses isolated from dogs in many parts of the United States differed antigenically from the viruses isolated prior to that date. The new antigenic type (designated CPV type 2b) has largely replaced the previous antigenic type (CPV type 2a) among virus isolates from the United States. This represents the second occurrence of a new antigenic type of this DNA virus since its emergence in 1978, as the original CPV type (CPV type 2) had previously been replaced between 1979 and 1981 by the CPV type 2a strain. DNA sequence comparisons showed that CPV types 2b and 2a differed by as few as two nonsynonymous (amino acid-changing) nucleotide substitutions in the VP-1 and VP-2 capsid protein genes. One mutation, resulting in an Asn-Asp difference at residue 426 in the VP-2 sequence, was shown by comparison with a neutralization-escape mutant selected with a non-CPV type 2b-reactive monoclonal antibody to determine the antigenic change. The mutation selected by that monoclonal antibody, a His-Tyr difference in VP-2 amino acid 222, was immediately adjacent to residue 426 in the three-dimensional structure of the CPV capsid. The CPV type 2b isolates are phylogenetically closely related to the CPV type 2a isolates and are probably derived from a common ancestor. Phylogenetic analysis showed a progressive evolution away from the original CPV type. This pattern of viral evolution appears most similar to that seen in some influenza A viruses.  相似文献   

4.
Canine parvovirus (CPV) is a host range variant of a feline virus that acquired the ability to infect dogs through changes in its capsid protein. Canine and feline viruses both use the feline transferrin receptor (TfR) to infect feline cells, and here we show that CPV infects canine cells through its ability to specifically bind the canine TfR. Receptor binding on host cells at 37 degrees C only partially correlated with the host ranges of the viruses, and an intermediate virus strain (CPV type 2) bound to higher levels on cells than did either the feline panleukopenia virus or a later strain of CPV. During the process of adaptation to dogs the later variant strain of CPV gained the ability to more efficiently use the canine TfR for infection and also showed reduced binding to feline and canine cells compared to CPV type 2. Differences on the top and the side of the threefold spike of the capsid surface controlled specific TfR binding and the efficiency of binding to feline and canine cells, and these differences also determined the cell infection properties of the viruses.  相似文献   

5.
Wildlife inhabiting human-dominated landscapes is at risk of pathogen spill-over from domestic species. With the aim of gaining knowledge in the dynamics of viral infections in Iberian wolves (Canis lupus) living in anthropized landscapes of northern Spain, we analysed between 2010 and 2013 the samples of 54 wolves by serology and polymerase chain reaction (PCR) for exposure to four pathogenic canine viruses: canine distemper virus (CDV), canine parvovirus-2 (CPV), canine adenovirus 1 and 2 (CAV-1 and CAV-2) and canine herpesvirus. Overall, 76% of the studied wolves presented evidence of exposure to CPV (96% by HI, 66% by PCR) and 75% to CAV (75% by virus neutralization (VN), 76% by PCR, of which 70% CAV-1 and 6% CAV-2). This represents the first detection of CAV-2 infection in a wild carnivore. CPV/CAV-1 co-infection occurred in 51% of the wolves. The probability of wolf exposure to CPV was positively and significantly correlated with farm density in a buffer zone around the place where the wolf was found, indicating that rural dogs might be the origin of CPV infecting wolves. CPV and CAV-1 appear to be enzootic in the Iberian wolf population, which is supported by the absence of seasonal and inter-annual variations in the proportion of positive samples detected. However, while CPV may depend on periodical introductions by dogs, CAV-1 may be maintained within the wolf population. All wolves were negative for exposure to CDV (by VN and PCR) and CHV (by PCR). The absence of acquired immunity against CDV in this population may predispose it to an elevated rate of mortality in the event of a distemper spill-over via dogs.  相似文献   

6.
S Borovec  C Broumis  W Adcock  R Fang  E Uren 《Biologicals》1998,26(3):237-244
To determine the efficacy of a clean-in-place system for the inactivation of viruses present in human plasma, the effect of 0.1 M sodium hydroxide at 60 degrees C on viral infectivity was investigated. Inactivation of the following model and relevant viruses were followed as a function of time: human hepatitis A virus (HAV), canine parvovirus (CPV; a model for human parvovirus B-19) pseudorabies virus (PRV, a model for hepatitis B virus), and bovine viral diarrhoea virus (BVDV, a model for hepatitis C virus and human immunodeficiency virus). Infectivity of CPV was determined by a novel in situ EIA method which will prove useful for studies to validate parvovirus inactivation or removal. Infectivity of BVDV, PRV and CPV were shown to be reproducibly inactivated below the limit of detection by 0.1 M NaOH at 60 degrees C within 30 s. HAV was inactivated to below the limit of detection within 2 min. Treatment with heat alone also resulted in some log reduction for all viruses tested except for CPV which remained unaffected after heating at 60 degrees C for 16 min. Treatment of HAV with hydroxide alone (up to 1.0 m) at 15 degrees C did not lead to rapid inactivation. Collectively, these data suggest that 0.1 M NaOH at 60 degrees C for two min should be sufficient to inactivate viruses present in process residues.  相似文献   

7.
Geographically separate populations of winter moth (Operophtera brumata L.) were sampled in heather habitats on the Orkney Isles in order to investigate the prevalence of virus pathogens. Reoviruses were isolated in 11 of the 13 winter moth populations sampled, with 3 novel species being detected. Two species of Cypoviridae (CPV) were isolated, Operophtera brumata CPV18 and O. brumata CPV19, with one host population suffering 46% infection prevalence of OpbuCPV19. A third virus, O. brumata Reovirus (OpbuRV), was isolated from both winter moth and a hymenopteran parasitoid wasp, Phobocampe tempestiva, which is abundant in these populations. This was identified as a non-occluded reovirus, which was clearly able to infect and persist in both the lepidopteran and the hymenopteran host. The genomes of the three viruses were characterised using gel electrophoresis and the virus structure was investigated using transmission electron microscopy. The relationship of these viruses with a baculovirus that also infects winter moth, OpbuNPV, was investigated, as well as the association of OpbuRV with P. tempestiva. The detection of such viruses is discussed with reference to studies of similar viruses in other lepidopteran and hymenopteran host systems.  相似文献   

8.
Genes and proteins of the kelch superfamily were structurally analyzed in the smallpox (SPV), monkeypox (MPV), cowpox (CPV), and vaccinia (VV) viruses. Genes potentially coding for the kelch-like proteins were found only in the variable terminal regions of the orthopoxvirus genome. The set and sizes of their protein products varied with species. All genes of the superfamily proved to be disrupted by mutations in SPV, which is highly pathogenic for its only host, man. The largest set of kelch-like proteins was observed for CPV, which is low-pathogenic for humans and has the broadest animal host range. The kelch-like proteins of one virus showed low homology to each other, whereas isologs of different viruses were highly homologous. The results testified to the earlier assumption that CPV is the most ancient and an ancestor of the other orthopoxviruses pathogenic for humans.  相似文献   

9.
Genes and proteins of the kelch superfamily were structurally analyzed in the smallpox (SPV), monkeypox, cowpox (CPV), and vaccinia viruses. Genes potentially coding for the kelch-like proteins were found only in the variable terminal regions of the orthopoxvirus genome. The set and sizes of their protein products varied with species. All genes of the superfamily proved to be disrupted by mutations in SPV, which is highly pathogenic for its only host, man. The largest set of kelch-like proteins was observed for CPV, which is low-pathogenic for humans and has the broadest animal host range. The kelch-like proteins of one virus showed low homology to each other, whereas isologs of different viruses were highly homologous. The results testified to the earlier assumption that CPV is the most ancient representative and an ancestor of the other orthopoxviruses pathogenic for humans.  相似文献   

10.
松毛虫质型多角体病毒的宿主域与交叉感染   总被引:2,自引:0,他引:2  
自1956年从赤松毛虫Dendrolimus spectabilis上首次发现赤松毛虫质型多角体病毒1型(D. spectabilis cytovirus 1,DsCPV-1)以来,先后从马尾松毛虫D. punctatus、油松毛虫D. tabulaeformis、赤松毛虫、德昌松毛虫D. p. tehchangensis、文山松毛虫D. p. Wenshangensis和落叶松毛虫D. superans上发现了质型多角体病毒(cytoplasmic polyhedrosis virus,CPV)。病毒基因组dsRNA电泳图谱分析表明,这些松毛虫CPV的不同分离株均属于质型多角体病毒1型(cytovirus 1)。这些松毛虫CPV病毒可以感染鳞翅目10科35种昆虫,其中对多种昆虫具有很高的感染力和良好的杀虫效果,可以从中筛选替代宿主生产松毛虫CPV杀虫剂,用于害虫生物防治。松毛虫CPV接种某些昆虫后病毒的基因组dsRNA电泳图谱发生了改变,可能是异源病毒诱发了宿主自身潜伏型病毒的感染复制。  相似文献   

11.
Persistence of insect viruses in field populations of alfalfa insects   总被引:1,自引:0,他引:1  
The persistence of viruses of five insects was observed in alfalfa fields. The insects were Autographa californica, Colias eurytheme, Pseudaletia unipuncta, Spodoptera exigua, and Trichoplusia ni. The isolated viruses were the granulosis (GV), the cytoplasmic-polyhedrosis (CPV), and the nuclear-polyhedrosis (NPV) viruses. The viruses persisted in the soil, on the alfalfa foliage, and in alternate hosts. In the soil, the viruses persisted even during the winter months when no foliage remained on the plants. Alfalfa sprouts harboring virus-infected larvae of C. eurytheme and S. exigua produced virus infections in larvae of these insects, but those with larvae of A. californica and P. unipuncta did not cause virus infection. The GVs and CPVs isolated from these insects were transmitted to nearly all of the other four species, but the NPVs appeared to be host specific.  相似文献   

12.
Viral emergence can result from the adaptation of endemic pathogens to new or altered host environments, a process that is strongly influenced by the underlying sequence diversity. To determine the extent and structure of intrahost genetic diversity in a recently emerged single-stranded DNA virus, we analyzed viral population structures during natural infections of animals with canine parvovirus (CPV) or its ancestor, feline panleukopenia virus (FPV). We compared infections that occurred shortly after CPV emerged with more recent infections and examined the population structure of CPV after experimental cross-species transmission to cats. Infections with CPV and FPV showed limited genetic diversity regardless of the analyzed host tissue or year of isolation. Coinfections with genetically distinct viral strains were detected in some cases, and rearranged genomes were seen in both FPV and CPV. The sporadic presence of some sequences with multiple mutations suggested the occurrence of either particularly error-prone viral replication or coinfection by more distantly related strains. Finally, some potentially organ-specific host effects were seen during experimental cross-species transmission, with many of the mutations located in the nonstructural protein NS2. These included residues with evidence of positive selection at the population level, which is compatible with a role of this protein in host adaptation.  相似文献   

13.
Cytoplasmic polyhedrosis virus (CPV) is unique among the double-stranded RNA viruses of the family Reoviridae in having a single capsid layer. Analysis by cryo-electron microscopy allows comparison of the single shelled CPV and orthoreovirus with the high resolution crystal structure of the inner shell of the bluetongue virus (BTV) core. This suggests that the novel arrangement identified in BTV, of 120 protein subunits in a so-called 'T=2' organization, is a characteristic of the Reoviridae and allows us to delineate structural similarities and differences between two subgroups of the family--the turreted and the smooth-core viruses. This in turn suggests a coherent picture of the structural organization of many dsRNA viruses.  相似文献   

14.
Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons—a newly recognized CPV host—to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity.  相似文献   

15.
秦琴  张陕宁  李明  魏辅文 《兽类学报》2006,26(4):387-391
本文采用巢式PCR/ RT-PCR 方法,对我国10 个动物园中无临床症状的圈养小熊猫的71 个肛拭子和61 个唾液拭子样品,进行犬瘟热病毒(CDV)、犬细小病毒(CPV)、犬冠状病毒(CCV)、犬腺病毒(CAV)和犬疱疹病毒(CHV)的检测,以评估我国圈养小熊猫是否面临这几种病毒的威胁。对阳性PCR 结果进行测序分析,并与GenBank 上的序列进行比较。结果,在肛拭子样品中检测到3 个CPV 和6 个CCV 阳性结果,经测序后,与GenBank 上序列的同源性分别达99% 和100% 。而在唾液拭子样品中没有检测到任何阳性结果,且CDV、CAV和CCV 的检测结果均为阴性。从阳性CPV 的肛拭子样品中分离到一株细小病毒毒株,表明圈养小熊猫已受到细小病毒和犬冠状病毒的感染,今后应加强这两种病毒的预防工作。本文所采用的PCR 方法检测病毒性疾病,能检测到微量的病毒模板,可对小熊猫病毒性感染进行早期诊断。  相似文献   

16.
Spotted hyenas (Crocuta crocuta) are abundant predators in the Serengeti ecosystem and interact with other species of wild carnivores and domestic animals in ways that could encourage disease transmission. Hyenas also have a unique hierarchical social system that might affect the flow of pathogens. Antibodies to canine distemper virus (CDV), feline immunodeficiency virus (FIV), feline panleukopenia virus/canine parvovirus (FPLV/CPV), feline coronavirus/ feline infectious peritonitis virus (FECV/IPV), feline calicivirus (FCV), and feline herpesvirus 1 (FHV1) have been detected in other Serengeti predators, indicating that these viruses are present in the ecosystem. The purpose of this study was to determine whether spotted hyenas also had been infected with these viruses and to assess risk factors for infection. Serum samples were collected between 1993 and 2001 from 119 animals in a single clan for which behavioral data on social structure were available and from 121 hyenas ill several other clans. All animals resided in the Masai Mara National Reserve. Antibodies to CDV, FIV, FPLV/CPV, FECV/FIPV, FCV, and FHV1 were present in 47%, 3.5%, 81%, 36%, 72%, and 0.5% of study hyenas, respectively. Antibody prevalence was greater in adults for FIV and FECV/FIPV, and being a female of high social rank was a risk factor for FIV. Hyenas near human habitation appeared to be at lower risk to have CDV, FIV, and FECV/FIPV antibodies, whereas being near human habitation increased the risk for FPLV/CPV antibodies. Canine (distemper virus and FECV/FIPV antibody prevalence varied considerably over time, whereas FIV, FPLV/CPV, and FCV had a stable, apparently endemic temporal pattern. These results indicate that hyenas might play a role in the ecology of these viruses in the Serengeti ecosystem. The effect of these viruses on hyena health should be further investigated. The lower prevalence of CDV antibody-positive hyenas near human habitation suggests that reservoirs for CDV other than domestic dogs are present in the Serengeti ecosystem.  相似文献   

17.
裂解气相色谱法和聚类分析在病毒识别中的应用研究   总被引:2,自引:0,他引:2  
应用裂解气相色谱法和系统聚类分析对56株不同地方分离株昆虫病毒(其中NPV29株,CPV11株,GV16株)进行了识别分析.利用欧氏距离系数的8种系统聚类算法所得聚类树状图谱,结果表明,通过裂解指纹图特征峰的分析,可明显地区分NPV、CPV、GV彼此间的差异和相同亚群的不同分离株间的异同.用聚类分析进一步证明裂解气相色谱法对昆虫病毒识别的可行性,从而为病毒的分类鉴定提供了准确、快速、重复性好的一种现代分析方法。  相似文献   

18.
The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses.  相似文献   

19.
Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts.  相似文献   

20.
The cell infection processes and host ranges of canine parvovirus (CPV) and feline panleukopenia virus (FPV) are controlled by their capsid interactions with the transferrin receptors (TfR) on their host cells. Here, we expressed the ectodomains of wild-type and mutant TfR and tested those for binding to purified viral capsids and showed that different naturally variant strains of the viruses were associated with variant interactions with the receptors which likely reflect the optimization of the viral infection processes in the different hosts. While all viruses bound the feline TfR, reflecting their tissue culture host ranges, a naturally variant mutant of CPV (represented by the CPV type-2b strain) that became the dominant virus worldwide in 1979 showed significantly lower levels of binding to the feline TfR. The canine TfR ectodomain did not bind to a detectable level in the in vitro assays, but this appears to reflect the naturally low affinity of that interaction, as only low levels of binding were seen when the receptor was expressed on mammalian cells; however, that was sufficient to allow endocytosis and infection. The apical domain of the canine TfR controls the specific interaction with CPV capsids, as a canine TfR mutant altering a glycosylation site in that domain bound FPV, CPV-2, and CPV-2b capsids efficiently. Enzymatic removal of the N-linked glycans did not allow FPV binding to the canine TfR, suggesting that the protein sequence difference is itself important. The purified feline TfR inhibited FPV and CPV-2 binding and infection of feline cells but not CPV-2b, indicating that the receptor binding may be able to prevent the attachment to the same receptor on cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号