首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Utilizing the -replacement reaction ofStreptomyces cystathionine -lyase (EC 4.4.1.1.), an efficient production method forl-cystathionine has been established. Under optimal conditions, 50 mMl-cystathionine was synthesized from 50 mMO-succinyl-l-homoserine and 50 mMl-cysteine, added in four stages to the reaction mixture, with a substrate conversion rate of 100%. This productivity (11 gl-1 of reaction mixture) is about 3.5 times higher than that withl-homoserine andl-cysteine as substrates.Recipient of a JSPS Fellowship for Japanese Junior Scientists  相似文献   

3.
Right-handed helical double-stranded DNA molecules were shown to interact with chitosans to form under certain conditions (chitosan molecular weight, content of amino groups, distance between amino groups, ionic strength and pH of solution) cholesteric liquid-crystalline dispersions characterized by abnormal positive band in CD spectrum in the absorption region of DNA nitrogen bases. Conditions were found for the appearance of intense negative band in CD spectrum upon dispersion formation. In some cases, no intense band appeared in CD spectrum in spite of dispersion formation. These results indicate not only the multiple forms of liquid-crystalline dispersions of DNA–chitosan complexes but also a possibility to control the spatial properties of these complexes. The multiplicity of liquid-crystalline forms of DNA–chitosan complexes was attempted to explain by the effect of character of dipoles distribution over the surface of DNA molecules on the sense of spatial twist of cholesteric liquid crystals resulting from molecules of the complexes.  相似文献   

4.
Actinophage phiC31 isolated from Streptomyces coelicolor A3(2), the only strain among actinomycetes for which a genetic map had been constructed, appears to be a typical temperate phage. After phiC31 infection, true lysogenic cultures arose which liberated phage and were immune to infection with homologous phage after repeated single-colony isolations and treatment with phage-specific antiserum. Clear-plaque (c) mutants were derived from phiC31 phage which failed to lysogenize sensitive cultures. Actinophage phiC31 has a temperature-sensitive stage of reproduction. A phage which reproduces with the same effectiveness at high (37 C) and low (28 C) temperatures has also been obtained. Heat-inducible (ct) mutants were isolated from this phage which were able to lysogenize sensitive cultures at 28 C but failed to do so at 37 C. Properties of ct mutants suggest that ct mutations involve a gene controlling maintenance of the lysogenic state in actinomycetes and synthesizing repressor, which may become heat-sensitive as a result of mutation.  相似文献   

5.
Plasma Physics Reports - A brief review is presented of experiments on the formation of Galatea–Belt magnetoplasma configurations carried out by the suggestion of A.I. Morozov at the Plasma...  相似文献   

6.
7.
We previously cloned the sigH gene encoding a stress-response sigma factor sigma(H) in Streptomyces coelicolor A3(2), located in an operon with the gene encoding proposed anti-sigma factor UshX. To clarify the in vivo function of sigma(H), a stable null mutant of sigH was prepared by homologous recombination. This mutation appeared to have no obvious effect on vegetative growth, but dramatically affected morphological differentiation. Microscopy showed that the sigH mutant produced undifferentiated hyphae with rare spore chains, giving the colony a pale gray color compared to the dark gray wild-type spores. The sigH mutation partially affected growth under conditions of high osmolarity. Expression of the sigH operon was investigated in the S. coelicolor sigH mutant. Out of four promoters directing expression of the sigH operon, the sigH-P2 promoter--the only promoter preferentially induced by salt-stress conditions--was inactive in the sigH mutant. The results indicated that the sigH-P2 promoter is dependent (directly or indirectly) upon sigma(H) and that the operon is autocatalytically activated. We propose that in S. coelicolor sigma(H) has a dual role, regulating the osmotic response and morphological differentiation.  相似文献   

8.
Single nucleotide polymorphisms (SNPs) in the KLK3 gene on chromosome 19q13.33 are associated with serum prostate-specific antigen (PSA) levels. Recent genome wide association studies of prostate cancer have yielded conflicting results for association of the same SNPs with prostate cancer risk. Since the KLK3 gene encodes the PSA protein that forms the basis for a widely used screening test for prostate cancer, it is critical to fully characterize genetic variation in this region and assess its relationship with the risk of prostate cancer. We have conducted a next-generation sequence analysis in 78 individuals of European ancestry to characterize common (minor allele frequency, MAF >1%) genetic variation in a 56 kb region on chromosome 19q13.33 centered on the KLK3 gene (chr19:56,019,829–56,076,043 bps). We identified 555 polymorphic loci in the process including 116 novel SNPs and 182 novel insertion/deletion polymorphisms (indels). Based on tagging analysis, 144 loci are necessary to tag the region at an r 2 threshold of 0.8 and MAF of 1% or higher, while 86 loci are required to tag the region at an r 2 threshold of 0.8 and MAF >5%. Our sequence data augments coverage by 35 and 78% as compared to variants in dbSNP and HapMap, respectively. We observed six non-synonymous amino acid or frame shift changes in the KLK3 gene and three changes in each of the neighboring genes, KLK15 and KLK2. Our study has generated a detailed map of common genetic variation in the genomic region surrounding the KLK3 gene, which should be useful for fine-mapping the association signal as well as determining the contribution of this locus to prostate cancer risk and/or regulation of PSA expression.  相似文献   

9.
Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO2 to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO2, which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole–succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole–succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO2 antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole–succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO2 to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.KEY WORDS: cocrystals, dissolution rate, gas antisolvent, itraconazole  相似文献   

10.
Streptomyces are ubiquitous soil bacteria well known for their ability to produce a wide range of secondary metabolites including antibiotics. In their natural environments, they co-exist and interact with complex microbial communities and their natural products are assumed to play a major role in mediating these interactions. Reciprocally, their secondary metabolism can be influenced by the surrounding microbial communities. Little is known about these complex interactions and the underlying molecular mechanisms. During pairwise co-culture experiments, a fluorescent Pseudomonas, Pseudomonas fluorescens BBc6R8, was shown to prevent the production of the diffusible blue pigment antibiotic γ-actinorhodin by Streptomyces coelicolor A3(2) M145 without altering the biosynthesis of the intracellular actinorhodin. A mutant of the BBc6R8 strain defective in the production of gluconic acid from glucose and consequently unable to acidify the culture medium did not show any effect on the γ-actinorhodin biosynthesis in contrast to the wild-type strain and the mutant complemented with the wild-type allele. In addition, when glucose was substituted by mannitol in the culture medium, P. fluorescens BBc6R8 was unable to acidify the medium and to prevent the biosynthesis of the antibiotic. All together, the results show that P. fluorescens BBc6R8 impairs the biosynthesis of the lactone form of actinorhodin in S. coelicolor by acidifying the medium through the production of gluconic acid. Other fluorescent Pseudomonas and the opportunistic pathogen Pseudomonas aeruginosa PAO1 also prevented the γ-actinorhodin production in a similar way. We propose some hypotheses on the ecological significance of such interaction.  相似文献   

11.
The cell wall of the model actinomycete Streptomyces coelicolor M145 has recently been shown to contain the novel glycopolymer teichulosonic acid. The major building block of this polymer is 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (Kdn), suggesting initial clues about the genetic control of biosynthesis of this cell wall component. Here, through genome mining and gene knockouts, we demonstrate that the sco4879–sco4882 genomic region of S. coelicolor M145 is necessary for biosynthesis of teichulosonic acid. Specifically, mutants carrying individual knockouts of sco4879, sco4880 and sco4881 genes do not produce Kdn-containing glycopolymer and instead accumulate the minor cell wall component poly(diglycosyl 1-phosphate). Our studies provide evidence that this region is at least partly responsible for biosynthesis of Kdn, whereas flanking genes might control the other steps of teichulosonic acid formation.  相似文献   

12.
13.
14.
15.
The record of terrestrial vertebrates in the upper Albian to Cenomanian Wayan Formation of Idaho is sparse, with most fossils recovered belonging to the small orodromine neornithischian Oryctodromeus cubicularis and the maniraptoran ootaxon Macroelongatoolithus carlylei. Here we report on a diversity of theropod forms now recognised from various isolated teeth, vertebrae, eggs and eggshell. Theropods recognised from isolated teeth include a large possible tyrannosauroid, a small tyrannosauroid, dromaeosaurids, and indeterminate theropods. A possible neovenatorid and indeterminate theropods are recognised from isolated vertebrae. A giant oviraptorosaur is indicated by the presence of rare eggs and common eggshell accumulations referred to Macroelongatoolithus. While these remains are admittedly meager, their presence indicates that a substantial diversity of theropods existed in the Albian to Cenomanian environments of southeastern Idaho. The Wayan theropod assemblage is among the most diverse reported for this time period in North America, and represents a transitional assemblage resembling that of the later Late Cretaceous.  相似文献   

16.
Two-component regulatory systems play a key role in the cell metabolism adaptation to changing nutritional and environmental conditions. The fidelity between the two cognate proteins of a two-component system is important since it determines whether a specific response regulator integrates the signals transmitted by different sensor kinases. Phosphate regulation in Streptomyces coelicolor is mostly mediated by the PhoR-PhoP two-component system. Previous studies elucidated the mechanisms that control phosphate regulation as well as the genes directly regulated by the response regulator PhoP (pho regulon) in this organism. However, the role of the histidine kinase PhoR in Streptomyces coelicolor had not been unveiled so far. In this work, we report the characterization of a non-polar ΔphoR deletion mutant in S. coelicolor that keeps its native promoter. Induction of the phoRP operon was dependent upon phosphorylation of PhoP, but the ΔphoR mutant expressed phoP at a basal level. RT-PCR and reporter luciferase assays demonstrated that PhoR plays a key role in the activation of the pho regulon in this organism. Our results point towards a strict cognate partner specificity in terms of the phosphorylation of PhoP by PhoR thus corroborating the tight interaction between the two-components of this system.  相似文献   

17.
Summary Glutamine synthetase I activity ofStreptomyces coelicolor was strongly repressed by ammonia and was induced 56.8 fold in a nitrogen-free medium. Glutamine synthetase II activity was not induced even by a long-term nitrogen starvation. Therefore, glutamine synthetase I is the only active enzyme ofStreptomyces coelicolor.  相似文献   

18.
19.
We purified from rat brain a novel actin filament (F-actin)–binding protein of ∼180 kD (p180), which was specifically expressed in neural tissue. We named p180 neurabin (neural tissue–specific F-actin– binding protein). We moreover cloned the cDNA of neurabin from a rat brain cDNA library and characterized native and recombinant proteins. Neurabin was a protein of 1,095 amino acids with a calculated molecular mass of 122,729. Neurabin had one F-actin–binding domain at the NH2-terminal region, one PSD-95, DlgA, ZO-1–like domain at the middle region, a domain known to interact with transmembrane proteins, and domains predicted to form coiled-coil structures at the COOH-terminal region. Neurabin bound along the sides of F-actin and showed F-actin–cross-linking activity. Immunofluorescence microscopic analysis revealed that neurabin was highly concentrated in the synapse of the developed neurons. Neurabin was also concentrated in the lamellipodia of the growth cone during the development of neurons. Moreover, a study on suppression of endogenous neurabin in primary cultured rat hippocampal neurons by treatment with an antisense oligonucleotide showed that neurabin was involved in the neurite formation. Neurabin is a candidate for key molecules in the synapse formation and function.During the development of the nervous system, the distal tip of the elongating axon—the growth cone—actively migrates toward its target cell in response to the combined actions of attractive and repulsive guidance molecules in the extracellular environment (Garrity and Zipursky, 1995; Keynes and Cook, 1995; Chiba and Keshishian, 1996; Culotti and Kolodkin, 1996; Friedman and O''Leary, 1996; Tessier-Lavigne and Goodman, 1996). When the growth cone contacts with the target cell, it is transformed into the functional presynaptic terminal (Garrity and Zipursky, 1995; Chiba and Kishishian, 1996). The actin cytoskeleton has been shown to play crucial roles in these processes of the synapse formation (Mitchison and Kirschner, 1988; Smith, 1988; Bentley and O''Connor, 1994; Lin et al., 1994; Mackay et al., 1995; Tanaka and Sabry, 1995).In the developing nervous system, the actin cytoskeleton is prominent in two structural domains of the growth cone, filopodia and lamellipodia (Mitchison and Kirschner, 1988; Smith, 1988; Bentley and O''Connor, 1994; Lin et al., 1994; Mackay et al., 1995; Tanaka and Sabry, 1995). In these domains, actin filament (F-actin)1 assembled at the leading edge are transported into the center of the growth cone and disassembled there. It has been suggested that this retrograde flow of F-actin is crucial for the growth cone motility. Drugs that disrupt F-actin have also been shown to cause the lamellipodial and filopodial collapse and block the ability of neurons to extend the growth cone in the correct direction (Marsh and Letourneau, 1984; Forscher and Smith, 1988; Bentley and Toroian-Raymond, 1986; Chien et al., 1993). These results suggest that the actin cytoskeleton regulates not only the growth cone motility but also the growth cone directionality. Recently, a variety of guidance molecules and their receptors have been identified (Garrity and Zipursky, 1995; Keynes and Cook, 1995; Chiba and Keshishian, 1996; Culotti and Kolodkin, 1996; Friedman and O''Leary, 1996; Tessier-Lavigne and Goodman, 1996). However, which molecules of the actin cytoskeleton are essential for the growth cone motility and directionality is not well understood.When the growth cone contacts with the target cell, the target cell regulates the development of the presynaptic nerve terminal and the formation of the functional synapse (Bowe and Fallon, 1995; Chiba and Keshishian, 1996). In the established nervous system, the presynaptic and postsynaptic membranes get aligned in space and constitute the synaptic junction (Burns and Augustine, 1995; Garner and Kindler, 1996). Electron microscopic studies have revealed the ultrastructural features of the synaptic junction (Burns and Augustine, 1995; Garner and Kindler, 1996). The presynaptic cytoplasm is characterized by synaptic vesicles (SVs). SVs are not distributed uniformly; SVs cluster together in the vicinity of the presynaptic plasma membrane, where F-actin forms a network and is associated with the presynaptic plasma membrane (Hirokawa et al., 1989). Most SVs within the cluster are linked through thin strands to each other, to F-actin, or to both (Hirokawa et al., 1989). A subset of SVs within the cluster are attached by fine filamentous threads to neurotransmitter release zone at the presynaptic plasma membrane (Hirokawa et al., 1989). The presynaptic submembranous cytoskeleton is assumed to be involved in recruiting Ca2+ channels and the components of the SV fusion complex, delivering SVs to the neurotransmitter release zone, and keeping them in place (Burns and Augustine, 1995; Garner and Kindler, 1996). At the inner surface of the post-synaptic plasma membrane, there is an electron dense thickening, called postsynaptic density. The postsynaptic density is assumed to be involved in the selective targeting and accumulation of ion channels and receptors (Burns and Augustine, 1995; Garner and Kindler, 1996). It is also assumed that the presynaptic and postsynaptic submembranous cytoskeleton elements are linked to cell adhesion molecules to regulate the synaptic stabilization and plasticity (Fields and Itoh, 1996; Garner and Kindler, 1996). The presynaptic and postsynaptic submembranous cytoskeleton elements are thought to be composed of spectrin/fodrin, ankyrin, α-adducin, and protein 4.1 isoforms and to be linked to F-actin through these cytoskeleton proteins (Garner and Kindler, 1996). However, little is known about which molecules of the submembranous cytoskeleton are essential for the synaptic transmission and/or the synaptic stabilization.To understand the regulation of the actin cytoskeleton during and after the development of the nervous system, it is of crucial importance to identify F-actin–binding proteins implicated in the synapse formation and function. Therefore, we attempted here to isolate neural tissue–specific F-actin–binding proteins. We isolated a novel neural tissue–specific F-actin–binding protein from rat brain, which may be involved in neurite formation, and named it neurabin (neural tissue–specific F-actin–binding protein).  相似文献   

20.
Summary An enzyme that catalyzes 2-O-phosphorylation of oleandomycin and several other macrolide antibiotics has been purified approximately 47-fold from cell-free extracts ofStreptomyces coelicolor Müller, NRRL 3532 (UC 5240). The reaction product was verified as being oleandomycin-2-O-phosphate by mass spectrometry. As a result of purification, the enzyme was separated from two lincosaminide inactivating enzyme activities also present in the cell-free extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号