首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
L I Horváth  P J Brophy  D Marsh 《Biochemistry》1988,27(14):5296-5304
The pH and salt dependences of the interaction of phosphatidic acid, phosphatidylserine, and stearic acid with myelin proteolipid apoprotein (PLP) in dimyristoylphosphatidylcholine (DMPC) recombinants have been studied by electron spin resonance spectroscopy, using spin-labeled lipids. The two-component spin-label spectra have been analyzed both by spectral subtraction and by simulation using the exchange-coupled Bloch equations to give the fraction of lipids motionally restricted by the protein and the rate of lipid exchange between the fluid and motionally restricted lipid populations. For stearic acid, phosphatidic acid, and phosphatidylserine, the fraction of motionally restricted spin-label increases with increasing pH, with pKa's of 7.7, 7.6, and ca. 9.4, respectively. The corresponding pKa's for the bulk lipid regions of the bilayer are estimated, from changes in the ESR spectra, to be 6.7, 7.4, and 11, respectively. In the dissociated state at pH 9.0, the fraction of motionally restricted component decreases with increasing salt concentration, reaching an approximately constant value at [NaCl] = 0.5-1.0 M for all three negatively charged lipids. The net decreases for stearic acid and phosphatidic acid are considerably smaller (by ca. 30%) than those obtained on protonating the two lipids, whereas for phosphatidylserine the fraction of motionally restricted lipid in high salt is reduced to that corresponding to phosphatidylcholine. For a fixed lipid/protein ratio, the on-rate for exchange at the lipid-protein interface is independent of the degree of selectivity and has a shallow temperature dependence, as expected for a diffusion-controlled process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
M Esmann  K Hideg  D Marsh 《Biochemistry》1988,27(11):3913-3917
The interactions of a series of spin-labeled fatty acids, in which the nitroxide ring is incorporated in different ways as an integral part of the hydrocarbon chain, with the (Na+,K+)-ATPase in membranes from Squalus acanthias, have been studied by electron spin resonance spectroscopy. The fatty acids are 2,4-, 2,5-, and 3,2-substituents of 2,2,5,5-tetramethylpyrrolidine-N-oxyl and belong to the class of minimal perturbation nitroxide probes. For all five fatty acid labels, a motionally restricted lipid component was observed in the ESR spectra of (Na+,K+)-ATPase membranes, in addition to the fluid component, which was found in the spectra of the extracted membrane lipids. The pH dependence of the motionally restricted spin-label population indicated a sensitivity in the selectivity of the lipid-protein interaction to the protonation state of the fatty acid. These results agree with those found previously for the conventional oxazolidine (doxyl) fatty acid and phospholipid spin-label derivatives [Esmann, M., Watts, A., & Marsh, D. (1985) Biochemistry 24, 1386-1393] and indicate that the motion of the lipid chains is significantly hindered by interaction with the protein, irrespective of the nature of the spin-label group.  相似文献   

3.
Lipid spin labels have been used to study lipid-protein interactions in bovine and frog rod outer segment disc membranes, in (Na+, K+)-ATPase membranes from shark rectal gland, and in yeast cytochrome oxidase-dimyristoyl phosphatidylcholine complexes. These systems all display a two component ESR spectrum from 14-doxyl lipid spin-labels. One component corresponds to the normal fluid bilayer lipids. The second component has a greater degree of motional restriction and arises from lipids interacting with the protein. For the phosphatidylcholine spin label there are effectively 55 +/- 5 lipids/200,000-dalton cytochrome oxidase, 58 +/- 4 mol lipid/265,000 dalton (Na+, K+)-ATPase, and 24 +/- 3 and 22 +/- 2 mol lipid/37,000 dalton rhodopsin for the bovine and frog preparations, respectively. These values correlate roughly with the intramembrane protein perimeter and scale with the square root of the molecular weight of the protein. For cytochrome oxidase the motionally restricted component bears a fixed stoichiometry to the protein at high lipid:protein ratios, and is reduced at low lipid:protein ratios to an extent which can be quantitatively accounted for by random protein-protein contacts. Experiments with spin labels of different headgroups indicate a marked selectivity of cytochrome oxidase and the (Na+, K+)-ATPase for stearic acid and for cardiolipin, relative to phosphatidylcholine. The motionally restricted component from the cardiolipin spin label is 80% greater than from the phosphatidylcholine spin label for cytochrome oxidase (at lipid:protein = 90.1), and 160% greater for the (Na+, K+)-ATPase. The corresponding increases for the stearic acid label are 20% for cytochrome oxidase and 40% for (Na+, K+)-ATPase. The effective association constant for cardiolipin is approximately 4.5 times greater than for phosphatidylcholine, and that for stearic acid is 1.5 times greater, in both systems. Almost no specificity is found in the interaction of spin-labeled lipids (including cardiolipin) with rhodopsin in the rod outer segment disc membrane. The linewidths of the fluid spin-label component in bovine rod outer segment membranes are consistently higher than those in bilayers of the extracted membrane lipids and provide valuable information on the rate of exchange between the two lipid components, which is suggested to be in the range of 10(6)-10(7) s-1.  相似文献   

4.
The major coat protein of bacteriophage M13 was incorporated in mixed dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (80/20 w/w) vesicles probed with different spin-labeled phospholipids, labeled on the C-14 atom of the sn-2 chain. The specificity for a series of phospholipids was determined from a motionally restricted component seen in the electron spin resonance (ESR) spectra of vesicles with the coat protein incorporated. At 30 degrees C and pH 8, the fraction of motionally restricted phosphatidic acid spin-label is 0.36, 0.52, and 0.72 for lipid/protein ratios of 18, 14, and 9 mol/mol, respectively. The ESR spectra, analyzed by digital subtraction, resulted in a phospholipid preference following the pattern cardiolipin = phosphatidic acid greater than stearic acid = phosphatidylserine = phosphatidylglycerol greater than phosphatidylcholine = phosphatidylethanolamine. The specificities found are related to the composition of the target Escherichia coli cytoplasmic membrane.  相似文献   

5.
The D-galactose-H(+) symport protein (GalP) of Escherichia coli is a homologue of the human glucose transport protein, GLUT1. After amplified expression of the GalP transporter in E. coli, lipid-protein interactions were studied in gradient-purified inner membranes by using spin-label electron paramagnetic resonance (EPR) spectroscopy. Phosphatidylethanolamine, -glycerol, -choline and -serine, in addition to phosphatidic and stearic acids, were spin-labelled at the 14 C-atom of the sn-2 chain. EPR spectra of these spin labels at probe amounts in GalP membranes consist of two components. One component corresponds to a lipid population whose motion is restricted by direct interaction with the transmembrane sections of the integral protein. The other component corresponds to a lipid population with greater chain mobility, and is similar to the single-component EPR spectrum of the spin-labelled lipids in membranes of E. coli lipid extract. Quantitation of the protein-interacting spin-label component allows determination of the stoichiometry and selectivity of lipid-protein interactions. On average, approximately 20 mol of lipid are motionally restricted per 52 kDa of protein in GalP membranes. At the pH of the transport assay, there is relatively little selectivity between the different phospholipids tested. Only stearic acid displays a stronger preferential interaction with this protein.  相似文献   

6.
The interaction of apocytochrome c with aqueous dispersions of phosphatidylserine from bovine spinal cord and with other negatively charged phospholipids has been studied as a function of pH and salt concentration by using spin-label electron spin resonance (ESR) spectroscopy and chemical binding assays. The ESR spectra of phospholipids spin-labeled at different positions on the sn-2 chain indicate a generalized decrease in mobility of the lipids, while the characteristic flexibility gradient toward the terminal methyl end of the chain is maintained, on binding of apocytochrome c to phosphatidylserine dispersions. This perturbation of the bulk lipid mobility or ordering is considerably greater than that observed on binding of cytochrome c. In addition, a second, more motionally restricted, lipid component is observed with lipids labeled close to the terminal methyl ends of the chains. This second component is not observed on binding of cytochrome c and can be taken as direct evidence for penetration of apocytochrome c into the lipid bilayer. It is less strongly motionally restricted than similar spectral components observed with integral membrane proteins and displays a steep flexibility gradient. The proportion of this second component increases with increasing protein-to-lipid ratio, but the stoichiometry per protein bound decreases from 4.5 lipids per 12 000-dalton protein at low protein contents to 2 lipids per protein at saturating amounts of protein. Apocytochrome c binding to phosphatidylserine dispersions decreases with increasing salt concentration from a saturation value corresponding to approximately 5 lipids per protein in the absence of salt to practically zero at 0.4 M NaCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The interaction of spin-labeled lipids with the myelin proteolipid apoprotein in complexes with dimyristoylphosphatidylcholine of varying lipid/protein ratios has been studied with electron spin resonance spectroscopy. A first shell of approximately 10 lipids per 25 000-dalton protein is found to be motionally restricted by the protein interface. This stoichiometry is consistent with a hexameric arrangement of the protein in the membrane. A selectivity of the various spin-labeled lipids for the motionally restricted component at the protein interface is found in the order stearic acid greater than phosphatidic acid greater than cardiolipin approximately greater than phosphatidylserine greater than phosphatidylglycerol approximately equal to phosphatidylcholine greater than phosphatidylethanolamine greater than androstanol approximately greater than cholestane.  相似文献   

8.
Stearic acid, phosphatidylcholine, and phosphatidylglycerol nitroxide spin-labels were used to probe the effect of 1-hexanol, urethane, diethyl ether, and ethanol on lipid-protein interactions in nicotinic acetylcholine receptor (nAcChoR) rich membranes from Torpedo nobiliana. For stearic acid spin-labeled at the C-14 position of the sn-1 acyl chain, 1-hexanol induced little change (over a wide concentration range, 0-16.7 mM) in either the ESR line shape or the proportion of motionally restricted spectral component from labels probing the protein interface. The main effect of 1-hexanol was limited to an increase in the mobility of stearic acid spin-labels probing the non-protein-associated environment. In contrast, for C-14 phosphatidylcholine spin-label, 1-hexanol decreased the fraction of spin-labels motionally restricted at the protein interface from 0.33 without 1-hexanol to 0.20 with 16.7 mM 1-hexanol, with no change in the line shape of the spectral component of these labels. The ESR spectral line shape of the fluid component due to phosphatidylcholine labels in sites away from the protein interface displayed a gradual decrease in spectral anisotropy on addition of increasing amounts of 1-hexanol. At a concentration of 1-hexanol that desensitizes half the receptors, the fraction of motionally restricted phosphatidylcholine spin-label is reduced by approximately 15%. The effect of 1-hexanol on phosphatidylglycerol spin-labels was intermediate between these two cases. Similar effects were measured with other general anesthetics, including urethane, diethyl ether, and ethanol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of salt and pH titration on the selectivity of spin-labeled analogues of phosphatidic acid, phosphatidylserine, phosphatidylcholine, and stearic acid for the nicotinic acetylcholine receptor (nAcChoR) reconstituted into dioleoylphosphatidylcholine was examined at 0 degrees C using electron spin resonance spectroscopy. The order of selectivity at pH 7.4 and 0 mM NaCl was phosphatidylserine > stearic acid > phosphatidic acid > phosphatidylcholine. The addition up to 2 M NaCl or titration of pH from 5.0 to > 9.0 did not alter the selectivity of the phospholipids for the nAcChoR. For stearic acid, conversely, titration of pH from 5.0 to 9.0 at 0 mM NaCl and titration of NaCl from 0 to 2 M at pH 9.0 both increased selectivity for the nAcChoR. It is concluded that electrostatic interactions do not account for the selectivity of the negatively charged phospholipids, phosphatidylserine, and phosphatidic acid for the nAcChoR. This is consistent with the known orientation of the transmembrane sequences M1 and M4, which predicts a balance in the number of negative and positive charges in the lipid-protein interface and suggests that the two positive charges on each M3 helix are not exposed to the lipid-protein interface.  相似文献   

10.
R D Pates  D Marsh 《Biochemistry》1987,26(1):29-39
Lipid-protein interactions in bovine rod outer segment disk membranes have been studied by using a series of eight stearic acid spin-label probes which were labeled at different carbon atom positions in the chain. In randomly oriented membrane dispersions, the electron spin resonance (ESR) spectra of the C-8, C-9, C-10, C-11, C-12, C-13, and C-14 atom positional isomers all apparently consist of two components. One of the components corresponds closely to the spectra obtained from dispersions of the extracted membrane lipids, and the other, which is characterized by a considerably greater degree of motional restriction of the lipid chains, is induced by the presence of the protein. Digital subtraction has been used to separate the two components. The proportion of the motionally restricted lipid component is approximately constant, independent of the position of the spin-label group, and corresponds to 30-40% of the total spin-label spectral intensity. The hyperfine splitting of the outer maxima in the difference spectra of the motionally restricted component decreases, and concomitantly, the line widths increase with increasing temperature but change relatively little with increasing distance of the spin-label group from the polar head-group region. This indicates that the corresponding chain motions of the protein-interacting lipids lie in the slow-motion regime of spin-label ESR spectroscopy (tau R approximately 10(-8) S) and that the mobility of these lipids increases with increasing temperature but does not vary greatly along the length of the chain. The data from the hyperfine splittings also suggest the existence of a polarity gradient immediately adjacent to the protein surface, as observed in the fluid lipid regions of the membrane. The more fluid lipid component is only slightly perturbed relative to the lipids alone (for label positions 5-14, inclusive), indicating the presence of chain motions on the nanosecond time scale, and the spectra also reveal a similar polarity profile in both lipid and membrane environments. ESR spectra have also been obtained as a function of magnetic field orientation with oriented membrane samples. For the C-14 atom positional isomer, the motionally restricted component is observed to have a large hyperfine splitting, with the magnetic field oriented both parallel and perpendicular to the membrane normal. This indicates that the motionally restricted lipid chains have a broad distribution of orientations at this label position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Functional membranes containing purified Torpedo californica acetylcholine receptor and dioleoylphosphatidylcholine (DOPC) were prepared by a cholate dialysis procedure with lipid to protein ratios of 100-400 to 1 (mol/mol). Spin-labeled lipids were incorporated into the reconstituted membranes and into native membranes prepared from Torpedo electroplax, and electron paramagnetic resonance (EPR) spectra were recorded between 0 and 20 degrees C. The spin-labels included nitroxide derivatives of stearic acid (16-doxylstearic acid), androstane, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidic acid (PA). The phospholipid spin-labels had 16-doxylstearic acid in the sn-2 position. All the spectra showed two components corresponding to a relatively mobile bilayer component and a motionally restricted "protein-perturbed" component. The relative amounts of mobile and perturbed components were quantitated by spectral subtraction and integration techniques. The mobile/perturbed ratio was somewhat temperature dependent, and the results are discussed in terms of exchange between mobile and perturbed environments. Plots of the mobile/perturbed ratios vs. lipid/protein ratios at 1 degree C gave straight lines from which the relative binding affinity of each spin-label and the number of perturbed lipids per receptor protein could be calculated. All the spin-labels gave similar values for the number of perturbed lipids (40 +/- 7), a number close to the number of lipids that will fit around the intramembranous perimeter of the receptor. The affinities of the spin-labeled lipids for the receptor relative to DOPC were androstane (K = 4.3) congruent to 16-doxylstearic acid (4.1) greater than PA (2.7) greater than PE (1.1) approximately PC (1.0) approximately PS (0.7). The lipids having the highest affinity for the acetylcholine receptor were also those that have the largest effects on the ion flux functional properties of the receptor, and the results are discussed in terms of lipid effects on receptor function.  相似文献   

12.
A multiple equilibrium binding model is used to examine phospholipid and cholesterol binding with the transmembranous protein Ca2+-ATPase (calcium pump). The protein was reconstituted in egg phosphatidylcholine bilayers by lipid substitution of rabbit muscle sarcoplasmic reticulum. Electron spin resonance spectra of a phosphatidylcholine spin-label and a recently developed cholesterol spin-label show two major spectral contributions, a motionally restricted component consistent with interactions between the label and the protein surface and another component characteristic of motion of the label in a fluid lipid bilayer. The number of lipid binding (or contact) sites at the hydrophobic surface of the protein is calculated to be N = 22 +/- 2. Experiments with intact sarcoplasmic reticulum membranes give approximately the same value for N. The relative binding constants are Kav approximately 1 for the phosphatidylcholine label and Kav approximately 0.65 for the cholesterol spin-label. Thus, cholesterol does contact the surface of the protein, but with a somewhat lower probability than phosphatidylcholine. This is confirmed by competition experiments where unlabeled cholesterol and the phospholipid spin-label are both present in the bilayer. Evidently the flexible acyl chains of the phospholipid molecules accommodate more readily to the irregular surface of the protein than does the rigid steroid structure of cholesterol.  相似文献   

13.
The electron spin resonance (ESR) spectra from spin-labeled phospholipids in recombinants of myelin proteolipid apoprotein with dimyristoylphosphatidylcholine have been simulated with the exchanged-coupled Bloch equations to obtain values for both the fraction of motionally restricted lipids and the exchange rate between the fluid and motionally restricted lipid populations. The rate of exchange between the two spin-labeled lipid components is found to lie in the slow exchange regime of nitroxide ESR spectroscopy. The values obtained for the fraction of motionally restricted component in the exchanged-coupled spectra are found to be in good agreement with those obtained previously by spectral subtraction for the same system [Brophy, P. J., Horváth, L. I., & Marsh, D. (1984) Biochemistry 23, 860-865]. The rate of lipid exchange off the protein is independent of lipid/protein ratio for a given spin-labeled phospholipid, as expected, and decreases with increasing selectivity of the various phospholipids for the protein. At 30 degrees C and for ionic strength 0.1 and pH 7.4, the off-rate constants are 4.6 X 10(6) s-1 for phosphatidic acid, 1.1 X 10(7) s-1 for phosphatidylserine, 1.6 X 10(7) s-1 for phosphatidylcholine, and 2.2 X 10(7) s-1 for phosphatidylethanolamine. These values are in the inverse ratio of the relative association constants of the various lipids for the protein (Brophy et al., 1984) and are appreciably slower than the rate of lipid lateral diffusion in dimyristoylphosphatidylcholine bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lipid-protein interactions in reconstituted band 3 preparations were investigated by using spin-labeled lipids in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Purified erythrocyte band 3 was reconstituted into egg phosphatidylcholine liposomes at high protein density with preservation predominantly of the dimeric state. Lipid-protein associations were revealed by the presence of a component in the EPR spectra that, when compared to spectra obtained from protein-free bilayers, indicated that lipid chain motions are restricted by interactions with the protein. From the fraction of the motionally restricted component obtained from the phosphatidylcholine spin-label, a value of 64 +/- 14 annular lipids per band 3 dimer was obtained. This agrees with a value of 62 for the number of lipids that may be accommodated around the electron density map of a band 3 dimer. Selectivity of various spin-labeled lipids for the protein revealed that androstanol had a lower affinity for the band 3 interface, whereas a distinct preference was observed for the negatively charged lipids phosphatidylglycerol and stearic acid over phosphatidylcholine. This preference for negatively charged lipids could not be screened by 1-M salt, indicating that electrostatic lipid-protein interactions are not dominant. Estimates of annular lipid exchange rates from measured acyl chain segmental motions suggested that the rate of exchange between bilayer and boundary lipids was approximately 10(6) s(-1), at least an order of magnitude slower than the rate of lipid lateral diffusion in protein-free bilayers.  相似文献   

15.
To investigate the physical mechanism by which melittin inhibits Ca-adenosine triphosphatase (ATPase) activity in sarcoplasmic reticulum (SR) membranes, we have used electron paramagnetic resonance spectroscopy to probe the effect of melittin on lipid-protein interactions in SR. Previous studies have shown that melittin substantially restricts the rotational mobility of the Ca-ATPase but only slightly decreases the average lipid hydrocarbon chain fluidity in SR. Therefore, in the present study, we ask whether melittin has a preferential effect on Ca-ATPase boundary lipids, i.e., the annular shell of motionally restricted lipid that surrounds the protein. Paramagnetic derivatives of stearic acid and phosphatidylcholine, spin-labeled at C-14, were incorporated into SR membranes. The electronic paramagnetic resonance spectra of these probes contained two components, corresponding to motionally restricted and motionally fluid lipids, that were analyzed by spectral subtraction. The addition of increasing amounts of melittin, to the level of 10 mol melittin/mol Ca-ATPase, progressively increased the fraction of restricted lipids and increased the hyperfine splitting of both components in the composite spectra, indicating that melittin decreases the hydrocarbon chain rotational mobility for both the fluid and restricted populations of lipids. No further effects were observed above a level of 10 mol melittin/mol Ca-ATPase. In the spectra from control and melittin-containing samples, the fraction of restricted lipids decreased significantly with increasing temperature. The effect of melittin was similar to that of decreased temperature, i.e., each spectrum obtained in the presence of melittin (10:1) was nearly identical to the spectrum obtained without melittin at a temperature approximately 5 degrees C lower. The results suggest that the principal effect of melittin on SR membranes is to induce protein aggregation and this in turn, augmented by direct binding of melittin to the lipid, is responsible for the observed decreases in lipid mobility. Protein aggregation is concluded to be the main cause of inactivation of the Ca-ATPase by melittin, with possible modulation also by the decrease in mobility of the boundary layer lipids.  相似文献   

16.
The Na+, K+-ATPase activity in the homogenate and in subcellular fractions of different parts of the brain of adult and old rats was studied in comparison. The content of cholesterol in the above fractions was also determined. In old age the Na+, K+-ATPase activity in the homogenate and microsomal fraction of the cerebral hemispheres' cortex decreases, while the Mg2+-ATPase activity in the cortex microsomal fraction increases. The age-related Na+, K+- and Mg2+-ATPase activity in the myelin of the stem in the synaptic plasma membranes of hemispheres and the brain stem remains unchanged whereas in the myelin fraction of hemispheres it grows. The content of cholesterol in the brain of old rats as compared with adult ones increases in the microsomal fraction and remains unchanged in synaptic membranes. The possible role of age-related modification of lipid component of plasma membranes in the above changes of Na+, K+-ATPase activity is discussed.  相似文献   

17.
The interaction of the major acidic bovine seminal plasma protein, PDC-109, with dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by spin-label electron spin resonance spectroscopy. Studies employing phosphatidylcholine spin labels, bearing the spin labels at different positions along the sn-2 acyl chain indicate that the protein penetrates into the hydrophobic interior of the membrane and interacts with the lipid acyl chains up to the 14th C atom. Binding of PDC-109 at high protein/lipid ratios (PDC-109:DMPC = 1:2, w/w) results in a considerable decrease in the chain segmental mobility of the lipid as seen by spin-label electron spin resonance spectroscopy. A further interesting new observation is that, at high concentrations, PDC-109 is capable of (partially) solubilizing DMPC bilayers. The selectivity of PDC-109 in its interaction with membrane lipids was investigated by using different spin-labeled phospholipid and steroid probes in the DMPC host membrane. These studies indicate that the protein exhibits highest selectivity for the choline phospholipids phosphatidylcholine and sphingomyelin under physiological conditions of pH and ionic strength. The selectivity for different lipids is in the following order: phosphatidylcholine approximately sphingomyelin > or = phosphatidic acid (pH 6.0) > phosphatidylglycerol approximately phosphatidylserine approximately and rostanol > phosphatidylethanolamine > or = N-acyl phosphatidylethanolamine > cholestane. Thus, the lipids bearing the phosphocholine moiety in the headgroup are clearly the lipids most strongly recognized by PDC-109. However, these studies demonstrate that this protein also recognizes other lipids such as phosphatidylglycerol and the sterol androstanol, albeit with somewhat reduced affinity.  相似文献   

18.
Arora A  Williamson IM  Lee AG  Marsh D 《Biochemistry》2003,42(17):5151-5158
Phospholamban is a cardiac regulatory protein that, in its monomeric form, inhibits the Ca(2+)-ATPase. Lipid-protein interactions with a synthetic variant of phospholamban, in which all cysteine residues are replaced with alanine, have been studied by spin-label electron spin resonance (ESR) in different lipid host membranes. Both the stoichiometry and selectivity of lipid interactions were determined from the two-component ESR spectra of phospholipid species spin-labeled on the 14 C atom of the sn-2 chain. The lipid stoichiometry is determined by the oligomeric state of the protein and the selectivity by the membrane disposition of the positively charged residues in the N-terminal section of the protein. In dimyristoylphosphatidylcholine (DMPC) membranes, the stoichiometry (N(b)) is 7 lipids/monomer for the full-length protein and 4 for the transmembrane section (residues 26-52). These stoichiometries correspond to the dimeric and pentameric forms, respectively. In palmitoyloleoylphosphatidylcholine, N(b) = 4 for both the whole protein and the transmembrane peptide. In negatively charged membranes of dimyristoylphosphatidylglycerol (DMPG), the lipid stoichiometry is N(b) = 10-11 per monomer for both the full-length protein and the transmembrane peptide. This stoichiometry corresponds to monomeric dispersion of the protein in the negatively charged lipid. The sequence of lipid selectivity is as follows: stearic acid > phosphatidic acid > phosphatidylserine = phosphatidylglycerol = phosphatidylcholine > phosphatidylethanolamine for both the full-length protein and the transmembrane peptide in DMPC. Absolute selectivities are, however, lower for the transmembrane peptide. A similar pattern of lipid selectivity is obtained in DMPG, but the absolute selectivities are reduced considerably. The results are discussed in terms of the integration of the regulatory species in the lipid membrane.  相似文献   

19.
Protein-lipid interactions are studied in normal and denervated electrocytes from Electrophorus electricus (L.). Structural modifications of the lipid micro-environment encircling integral membrane proteins in membrane fractions presenting Na(+),K(+)-ATPase activity are investigated using ESR spectroscopy of stearic acid spin labeled at the 14th carbon (14-SASL). The microsomal fraction derived from the innervated electric organ exhibits, on a discontinuous sucrose gradient, a bimodal distribution of the Na(+),K(+)-ATPase activity, bands a and b. Band b is almost absent in microsomes from the denervated organ, and band a', with the same density as band a has lower Na(+),K(+)-ATPase activity. Band a' presents a larger ratio of protein-interacting lipids than band a. Analysis of the lipid stoichiometry at the protein interface indicates that denervation causes at least a twofold average decrease on protein oligomerization. Physical inactivity and denervation have similar effects on protein-lipid interactions. Denervation also influences the selectivity of proteins for fatty acids. Experiments in decreasing pH conditions performed to verify the influence of stearic acid negative charge on protein interaction revealed that denervation produces loss of charge selectivity. The observed modifications on molecular interactions induced by denervation may have importance to explain modulation of enzyme activity.  相似文献   

20.
A study was made on the correlation between the degree of membrane fusion and surface tension increase of phosphatidic acid membranes caused by divalent cations. Membrane fusion was followed by the Tb3+/dipicolinic acid assay, monitoring the fluorescent intensity for mixing of the internal aqueous contents of small unilamellar lipid vesicles. The surface tension and surface potential of monolayers made of the same lipids as used in the fusion experiments were measured as a function of divalent cation concentration. It was found that the 'threshold' concentration to induce massive vesicle membrane fusion was the same for Ca2+ and Mg2+, and that the surface tension increase in the monolayer, induced by changing divalent cation concentration from zero to a concentration which corresponds to its threshold value, inducing vesicle membrane fusion, was approximately the same: 6.3 dyn/cm for both Ca2+ and Mg2+. Both the divalent cation's threshold concentrations as well as the surface tension change corresponding to the threshold concentration for the phosphatidic acid membrane were smaller than those for the phosphatidylserine membrane. The different fusion capability of these divalent cations for phosphatidic acid and phosphatidylserine membranes is discussed in terms of the different ion binding capabilities of these ions to the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号