首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 μM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42°C heat treatment, and the expressed GUS specific activity was 7–26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.  相似文献   

2.
Agrobacterium rhizogenes is the etiological agent for hairy-root disease (also known as root-mat disease). This bacterium induces the neoplastic growth of plant cells that differentiate to form “hairy roots.” Morphologically, A. rhizogenes-induced hairy roots are very similar in structure to wild-type roots with a few notable exceptions: Root hairs are longer, more numerous, and root systems are more branched and exhibit an agravitropic phenotype. Hairy roots are induced by the incorporation of a bacterial-derived segment of DNA transferred (T-DNA) into the chromosome of the plant cell. The expression of genes encoded within the T-DNA promotes the development and production of roots at the site of infection on most dicotyledonous plants. A key characteristic of hairy roots is their ability to grow quickly in the absence of exogenous plant growth regulators. As a result, hairy roots are widely used as a transgenic tool for the production of metabolites and for the study of gene function in plants. Researchers have utilized this tool to study root development and root–biotic interactions, to overexpress proteins and secondary metabolites, to detoxify environmental pollutants, and to increase drought tolerance. In this review, we provide an up-to-date overview of the current knowledge of how A. rhizogenes induces root formation, on the new uses for A. rhizogenes in tissue culture and composite plant production (wild-type shoots with transgenic roots), and the recent development of a disarmed version of A. rhizogenes for stable transgenic plant production.  相似文献   

3.
Hairy roots were induced from androgenic embryos of horse chestnut (Aesculus hippocastanum L.) by infection with Agrobacterium rhizogenes strain A4GUS. Single roots were selected according to their morphology in the absence of antibiotic or herbicide resistance markers. Seventy-one putative transformed hairy root lines from independent transformation events were established. Regeneration was induced in MS liquid medium supplemented with 30 6-benzylaminopurine (BA), and the regenerants were multiplied on MS solid medium containing 10 M BA. Following elongation on MS medium supplemented with 1 M BA and 500 mg/l polyvinylpyrrolidone, the shoots were subjected to a root-inducing treatment. Stable integration of TL-DNA within the horse chestnut genome was confirmed by Southern hybridization. The copy number of transgenes was estimated to be from two to four.Communicated by E.D. Earle  相似文献   

4.
A highly efficient and convenient method for the Agrobacterium rhizogenes-dependent production of transformed roots of Saponaria vaccaria L. (Caryophyllaceae) is described. The parameters tested and optimized include S. vaccaria cultivar, explant type, Agrobacterium rhizogenes strain and culture conditions. For cotransformation using additional recombinant T-DNA-containing A. rhizogenes strains, use of neomycin phosphotransferase and enhanced green fluorescent protein genes as selectable markers were tested alone and in combination. Optimal results, yielding a minimum of one transformed root per explant, were obtained using the cultivar Pink Beauty, the A. rhizogenes strain LBA9402 and internode explants precultured on a phytohormone mixture. Selection of cotransformed roots by observation of enhanced green fluorescent protein fluorescence alone was highly effective and convenient. NRCC Publication No. 48435.  相似文献   

5.
Zhao D  Fu C  Chen Y  Ma F 《Plant cell reports》2004,23(7):468-474
Axenically grown Saussurea medusa plantlets were inoculated with four Agrobacterium rhizogenes strains, and hairy root lines were established with A. rhizogenes strain R1601 in N6 medium. PCR and Southern hybridization confirmed integration of the T-DNA fragment of the Ri plasmid from A. rhizogenes into the genome of S. medusa hairy roots. In N6 medium, maximum biomass of the hairy root cultures was achieved [8 g (dry weight) per liter; growth ratio 35-fold] after 21 days of culture. The amount of jaceosidin extracted from the hairy root cultures was 46 mg/l (production ratio of 37-fold) after 27 days of culture. The maximum jaceosidin content obtained using N6 medium was higher than that obtained with Modified White, MS or B5 medium. In N6 medium, the tip segments were more efficient for hairy root growth and jaceosidin production than the middle and basal regions of the root.Abbreviations AS Acetosyringone - BA Benzyladenine - cef Cefotaxime sodium - DW Dry weight - FW Fresh weight - HPLC High-performance liquid chromatography - IAA Indole-3-acetic acid - km Kanamycin - NAA -Naphthaleneacetic acid - SDS Sodium dodecyl sulfate  相似文献   

6.
Hypocotyl explants of Catharanthus roseus produced hairy roots when cultured on Murashige and Skoog (MS) basal medium after infection by Agrobacterium rhizogenes. Explants gave rise to adventitious shoots at a frequency of up to 80% when cultured on MS medium supplemented with 31.1 M 6-benzyladenine and 5.4 M -naphthaleneacetic acid. There was a significant difference in the frequency of adventitious shoot formation for each hairy-root line derived from a different cultivar. Plants derived from hairy roots exhibited prolific rooting and had shortened internodes. Approximately half of the plants had wrinkled leaves and an abundant root mass with extensive lateral branching, but otherwise appeared morphologically normal. Plants with hairy roots that were derived from the cultivar Cooler Apricot developed flowers with petals that were white in the proximal region, whereas the wild-type flower petals are red. PCR and Southern blot analyses revealed that plants derived from hairy roots retained the Ri TL-DNA.Abbreviations BA 6-Benzyladenine - MS Murashige and Skoog medium - NAA -Naphthaleneacetic acid - SH Schenk and Hildebrandt mediumCommunicated by I.S. Chung  相似文献   

7.
Transgenic plants of rose-scented geranium (Pelargonium graveolens cv. Hemanti) have been produced from Agrobacterium rhizogenes (strains A4 and LBA9402) mediated hairy root cultures. Amongst the explants tested, leaves were most responsive followed by the petioles and internodal segments, respectively. The A4 strain performed better for all the three explants both in terms of frequency of response and time requirement for hairy root induction. Transgenic shoots could be obtained by spontaneous regeneration without intervening callus phase amongst 16% and 12% root lines of A4 and LBA 9402 origin, respectively, or they were induced in 29% and 22% hairy root lines of A4 and LBA9402 origin, respectively, with different hormonal supplementation. These transgenic plants showed 30% survival as against 90% of their control under the confined environment of glasshouse. The transgenic plants were of similar morphotype having increased branching, higher number of leaves with increased dentations, short and round stature, highly branched root system and absence of leaf wrinkling. These transgenic plants showed opine positive results even after 5 months of their transfer to the glasshouse. The essential oil compositions of 81% of these transgenics were qualitatively similar to that of the wild type parent. However, two transgenic plants (LZ-3 and 14TG) showed increase in concentrations of geraniol and geranyl esters signifying improved oil quality with respect to the citronellol:geraniol ratio. These two oils having better olfactory value represent an improvement over that of the wild type parent from the commercial point of view.  相似文献   

8.
Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by W. R. McCombie  相似文献   

9.
Hairy root cultures of Gentiana macrophylla were established by infecting the different explants four Agrobacterium rhizogenes strains namely A4GUS, R1000, LBA 9402 and ATCC11325, and hairy root lines were established with A. rhizogenes strain R1000 in 1/2 MS + B5 medium. Initially, 42 independent hairy root clones were maintained and seven clones belongs to different category were evaluated for growth, morphology, integration and expression of Ri T-DNA genes, and alkaloid contents in dry root samples. On the basis of total root elongation, lateral root density and biomass accumulation on solid media, hairy root clones were separated into three categories. PCR and Southern hybridization analysis revealed both left and right T-DNA integration in the root clones and RT-PCR analysis confirmed the expression of hairy root inducible gene. GUS assay was also performed to confirm the integration of left T-DNA. The accumulation of considerable amounts of the root-specific secoiridoid glucosides gentiopicroside was observed in GM1 ( and ) and the GM2 ( and DNA) type clones in considerably higher amount whether as two but callus-type clones (GM3) accumulated much less or only very negligible amounts of gentiopicroside. Out of four media composition the 1/2 MS + B5 vitamin media was found most suitable. We found that initial establishment of root cultures largely depends on root:media ratio. Maximum growth rate was recorded in 1:50 root:media ratio. The maximum biomass in terms of fresh weight (33-fold) was achieved in 1/2 MS + B5 media composition after 35 days in comparison to sixfold increase in control. The biomass increase was most abundant maximum from 15 to 30 days. Influence of A. rhizogenes strains and Ri plasmid of hairy root induction, the possible role of the TL-DNA and TR-DNA genes on growth pattern of hairy root, initial root inoculum:media ratio and effect of media composition is discussed.  相似文献   

10.
Cheng Y  Long M 《Biotechnology letters》2007,29(7):1129-1134
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plant and may be involved in plant defense such as wound and UV-B radiation. Here, expression of the gene encoding cytosolic NADP-ME (cytoNADP-ME, GenBank Accession No. AY444338) in rice (Oryza sativa L.) seedlings was induced by salt stress (NaCl). NADP-ME activities in leaves and roots of rice also increased in response to NaCl. Transgenic Arabidopsis plants over-expressing rice cytoNADP-ME had a greater salt tolerance at the seedling stage than wild-type plants in MS medium-supplemented with different levels of NaCl. Cytosolic NADPH/NADP+ concentration ratio of transgenic plants was higher than those of wild-type plants. These results suggest that rice cytoNADP-ME confers salt tolerance in transgenic Arabidopsis seedlings.  相似文献   

11.
Jasmonic acid (JA), its methyl ester (MeJA) and the biosynthetic precursor 12-oxophytodienoic acid (OPDA) were detected quantitatively during somatic embryogenesis of Medicago sativa L. Using GC-MS analysis, these compounds were found in initial explants, in calli and in somatic embryos in the nanogram range per gram of fresh weight. In distinct stages of somatic embryogenesis, JA and 12-OPDA accumulated preferentially in cotyledonary embryos. Initial explants exhibited about five-fold higher JA content than OPDA content, whereas in other stages OPDA accumulated predominantly. These data suggest that also in embryogenic tissues OPDA and JA may have individual signalling properties.  相似文献   

12.
13.
Crane C  Wright E  Dixon RA  Wang ZY 《Planta》2006,223(6):1344-1354
Medicago truncatula, barrel medic, is a forage crop that has been developed into a model legume. The development of new transformation methods is important for functional genomic studies in this species. Based on Agrobacterium tumefaciens-mediated transformation of root explants, we developed an effective system for producing M. truncatula (genotype R108) transgenic plants. Among the four A. tumefaciens strains (AGL1, C58C1, EHA105 and LBA4404) tested, EHA105 and AGL1 were most effective in regenerating transgenics. Callus induction frequency from root explants was 69.8%, and plantlet/shoot regeneration frequency was 41.3% when EHA105 was used. Transgenic nature of the regenerated plants was confirmed by PCR and Southern hybridization analyses. Progeny analysis revealed stable Mendelian meiotic transmission of transgenes. Because M. truncatula is particularly useful for the study of root endosymbiotic associations, we further developed a plant regeneration system from A. rhizogenes-transformed hairy roots of M. truncatula. Fertile true transgenic plants were regenerated from the hairy roots, thus allowing the assessment of gene functions at the whole plant level. Segregation analysis revealed that the hairy root genes could be segregated out in the progenies. By coupling A. rhizogenes-mediated hairy root transformation and the regeneration system reported here, once potential genes of interest are identified, the transformed hairy roots carrying such genes could be directly regenerated into plants for more detailed characterization of the genes.  相似文献   

14.
Ethylene biosynthesis during different phases of somatic embryogenesis in Medicago sativa L. cv. Rangelander using two regeneration protocols, RPI and RPII, was studied. The highest ethylene production was detected during callus growth on induction medium in both regeneration protocols. Significantly less ethylene was produced by embryogenic suspension than by callus (RPII). Developing embryos synthesized higher amounts of ethylene than mature embryos. Production of ethylene was strongly limited by the availability of 1-aminocyclopropane-1-carboxylic acid and also by ACC-oxidase activity. However, removal of ethylene from culture vessels’ atmosphere using KMnO4 or HgClO4 had no significant effect on callus growth, somatic embryo induction and development. Reducing of ethylene biosynthesis by aminoethoxyvinylglycine substantially decreased somatic embryo production and adversely affected their development, indicating ethylene requirement during proliferation and differentiation but not induction.  相似文献   

15.
Agrobacterium rhizogenes was used for efficient transformation of chrysanthemum. Two types of Agrobacterium, A. rhizogenes (A-13) and A. tumefaciens (LBA4404), which harbor pIG121-Hm, were employed for infection. In the A. rhizogenes-infected explants, hairy roots were not observed on any tested medium or culture condition. When explants were cultured on shoot induction medium, calli were formed at the cutting edge within 4–6 weeks of culture, and shoot primordia were observed on the callus surface after 2 weeks of callus formation. Consequently, with gus introduction, a significantly higher transformation rate was observed for A. rhizogenes (6.0%) compared with A. tumefaciens (3.3%). However, only 0.6% of the frequency of rol insertion was exhibited in A. rhizogenes mediation. These results indicate that A. rhizogenes effectively introduces T-DNA of the binary plasmid into the chrysanthemum genome by introducing Ri T-DNA at a low frequency. It also indicates that the system is a useful alternative for the transformation of chrysanthemum.  相似文献   

16.
Summary Excised cotyledons from 8-d-old pumpkin (Cucurbita pepo L.) seedlings were inoculated with Agrobacterium rhizogenes and cultured on hormone-free Murashige and Skoog medium. At the site of inoculation, transformed hairy roots were successfully induced by using wild strains 8196 (mannopine-type) and 15834 (agropine-type). After a subsequent transfer on a solid MS medium without hormones, roots obtained by transformation with strain 15834 failed to form stable hairy root cultures, while several hairy root lines were established with strain 8196. Three hairy root lines, Cp1, Cp2, and Cp31, have spontaneously generated callus with embryo-like structures after more than 3 yr of growth on the solid medium. The callus proliferation was more frequent when the autoclaving of nutrient medium, pH 5.7, was prolonged to 30 min. Separated calluses continued to proliferate and generated embryos with abnormal morphology. The combination of indole-3-acetic acid and benzyladenine had a favorable influence on embryogenesis and organogenesis in the Cp31 callus line. The Southern analysis of Cp31 root and embryo DNA confirmed the presence of the T-DNA of Agrobacterium rhizogenes.  相似文献   

17.
Seol E  Jung Y  Lee J  Cho C  Kim T  Rhee Y  Lee S 《Plant cell reports》2008,27(7):1197-1206
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species.  相似文献   

18.
Shoot cultures of nickel hyperaccumulating Alyssum murale were established from epicotyl explants of seedlings aseptically germinated on hormone-free MS medium. They were further maintained on media with 0–0.92 μM kinetin. Optimal shoot multiplication was at 0.46 μM kinetin. Inoculation by shoot wounding was performed with overnight suspension of A. rhizogenes A4M70GUS which contains GUS gene cointegrated in pRiA4. After 30 days hairy roots were produced at the wounding site in 31 explant (25% out of 124). Hairy roots were excised and further propagated on hormone-free medium as separate clones. In the first passage clones 3 and 6 could be distinguished by fast growth and spontaneous shoot regeneration. In other clones (12, 23 and 25) shoot regeneration required presence of cytokinins. The five shoot culture clones regenerated from hairy roots were further cultured on media with 0.46 μM kinetin. These shoots were characterized by good elongation and lateral shoot branching, short internodes, minute slightly curled leaves and well developed plagiotropic root system spreading over the surface of media. Thus all plants regenerated from hairy root cultures manifested the characteristic Ri syndrome phenotype. They all had a strong positive GUS reaction. PCR analysis confirmed presence of uidA sequence from the gus construct. They were also tolerant to nickel accumulating up to 24,700 μg g−1 dry weight.  相似文献   

19.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号