首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of Fe2+, ascorbic acid, propyl gallate, tiron, L-cysteine, and glutathione by Acidithiobacillus ferrooxidans was studied with respect to the effect of electron transport inhibitors and uncouplers on the rate of oxidation. All the oxidations were sensitive to inhibitors of cytochrome c oxidase, KCN, and NaN3. They were also partially inhibited by inhibitors of complex I and complex III of the electron transport system. Uncouplers at low concentrations stimulated the oxidation and inhibited it at higher concentrations. The oxidation rates of Fe2+ and L-cysteine inhibited by complex I and complex III inhibitors (amytal, rotenone, antimycin A, myxothiazol, and HQNO) were stimulated more extensively by uncouplers than the control rates. Atabrine, a flavin antagonist, was an exception, and atabrine-inhibited oxidation activities of all these compounds were further inhibited by uncouplers. A model for the electron transport pathways of A. ferrooxidans is proposed to account for these results. In the model these organic substrates reduce ferric iron on the surface of cells to ferrous iron, which is oxidized back to ferric iron through the Fe2+ oxidation pathway, leading to cytochrome oxidase to O2. Some of electrons enter the uphill (energy-requiring) electron transport pathway to reduce NAD+. Uncouplers at low concentrations stimulate Fe2+ oxidation by stimulating cytochrome oxidase by uncoupling. Higher concentrations lower deltap to the level insufficient to overcome the potentially uphill reaction at rusticyanin-cytochrome c4. Inhibition of uphill reactions at complex I and complex III leads to deltap accumulation and inhibition of cytochrome oxidase. Uncouplers remove the inhibition of deltap and stimulate the oxidation. Atabrine inhibition is not released by uncouplers, which implies a possibility of atabrine inhibition at a site other than complex I, but a site somehow involved in the Fe2+ oxidation pathway.  相似文献   

2.
In ferritin, iron is stored by oxidative deposition of the ferrous ion to form a hydrous ferric oxide mineral core. Two intermediates, formed during the initial stages of iron accumulation in apoferritin, have been observed previously in our laboratory and have been identified as a mononuclear Fe3(+)-protein complex and a mixed-valence Fe2(+)-Fe3(+)-protein complex. The physical characteristics of the mixed-valence Fe2(+)-Fe3+ complex and its relationship to the mononuclear Fe3+ complex in horse spleen apoferritin samples to which 0-240 iron atoms were added was examined by EPR spectroscopy. The results indicate that the mononuclear complex is not a precursor to the formation of the mixed-valence complex. Competitive binding studies with Cd2+, Zn2+, Tb3+, and UO2+(2) suggest that the mixed-valence complex is formed on the interior of the protein in the vicinity of the 2-fold axis of the subunit dimer. The mixed-valence complex could be generated by the partial oxidation of Fe2+ in apoferritin containing 120 Fe2+ or by the addition of up to 120 Fe2+ to ferritin already containing 18 Fe3+/protein molecule. The fact that the complex is generated during early Fe2+ oxidation suggests that it may be a key intermediate during the initial oxidative deposition of iron in the protein. The unusual EPR powder lineshape at 9.3 GHz of the mixed-valence complex was simulated with a rhombic g-tensor (gx = 1.95, gy = 1.88, gz = 1.77) and large linewidths and g-strain parameters. The presence of significant g-strain in the complex probably accounts for the failure to observe an EPR signal at 35 GHz and likely reflect considerable flexibility in the structure of the metal site. The temperature dependence of the EPR intensity in the range 8-38 K was modeled successfully by an effective spin Hamiltonian including exchange coupling (-2JS1.S2) and zero-field terms, from which an antiferromagnetic coupling of J = -4.0 +/- 0.5 cm-1 was obtained. This low value for J may reflect the presence of a mu-oxo bridge(s) in the dimer.  相似文献   

3.
Inhibition of hemin-mediated O2 activation by bovine superoxide dismutase and the copper tetrammine complex has been examined. It is shown that the inhibitory effect of these species is not due to metabolism of O2-., but to a nonspecific inhibition of the process by the Cu2+ ion. We propose that the inhibition occurs at the level of electron transfer from NADH to iron in an analogous manner to that proposed for the Cu2+ inhibition of microsomal electron transfer.  相似文献   

4.
5.
Harris (Biochemistry 24 (1985) 7412) reports that inorganic anions bind to human apotransferrin in such a way as to perturb the ultraviolet spectrum. The locus of binding is thought to involve the specific metal/anion-binding sites since no perturbation is observed with Fe3+-transferrin-CO3(2-). Paradoxically, we were unable to demonstrate the formation of Fe3+-transferrin-inorganic anion complexes despite the presence of high concentrations of SO4(2-), H2PO4-, Cl-, ClO4- or NO3-. Similar results were found for human lactoferrin. Electron paramagnetic resonance spectroscopy and visible spectrophotometry were used to monitor the results. An attempt to form the H2PO4- complex by displacement of glycine from Fe3+-transferrin-glycine resulted only in the disruption of the ternary complex. A series of inorganic anions varied in their ability to release iron from Fe3+-transferrin-CO3(2-) at pH 5.5, the approximate pH of endosomes where iron release takes place within cells. The order of effectiveness was H2P2O7(2-) much greater than H2PO4- greater than SO4(2-) greater than NO3- greater than Cl- greater than ClO4-. The rate of iron removal from Fe3+-transferrin-CO3(2-) at pH 5.5 by a 4-fold excess of pyrophosphate was greatly enhanced by physiological NaCl concentration. Iron removal was complete within 10 min, the approximate time for iron release from Fe3+-transferrin-CO3(2-) in developing erythroid cells. Thus, inorganic anions may have a significant effect on the release of iron under physiological conditions despite the fact that such inorganic anions cannot act as synergistic anions. The results are discussed in relation to a special role for the carboxylate group in allowing ternary complex formation.  相似文献   

6.
Interaction between iron(II) and acetohydroxamic acid (Aha), alpha-alaninehydroxamic acid (alpha-Alaha), beta-alaninehydroxamic acid (beta-Alaha), hexanedioic acid bis(3-hydroxycarbamoyl-methyl)amide (Dha) or desferrioxamine B (DFB) under anaerobic conditions was studied by pH-metric and UV-Visible spectrophotometric methods. The stability constants of complexes formed with Aha, alpha-Alaha, beta-Alaha and Dha were calculated and turned out to be much lower than those of the corresponding iron(II) complexes. Stability constants of the iron(II)-hydroxamate complexes are compared with those of other divalent 3d-block metal ions and the Irving-Williams series of stabilities was found to be observed. Above pH 4, in the reactions between iron(II) and desferrioxamine B, the oxidation of the metal ion to iron(III) by the ligand was found. The overall reaction that resulted in the formation of the tris-hydroxamato complex [Fe(HDFB)]+ and monoamide derivative of DFB at pH 6 is: 2Fe2+ + 3H4DFB+ = 2[Fe(HDFB)]+ + H3DFB-monoamide+ + H2O + 4H+. Based on these results, the conclusion is that desferrioxamine B can uptake iron in iron(III) form under anaerobic conditions.  相似文献   

7.
Scanning electron microscopic and energy-dispersive X-ray analyses were used to study the distributions of different types of elements in the epidermis, exodermis, endodermis, and vascular cylinder of the fracture face in the Lathyrus sativus L. roots in the presence or absence of Eu3+. Some index of the biological activity related to the elements binding with protein were determined also. The results showed that the tissular distributions of elements in the fracture face are different in the presence and absence of Eu3+. The atomic percentages of P, S, Ca, and Mn were influenced more than those of other elements. Eu3+ promoted the biological activities of various kinds of element. The one possible mechanism changing the biological activities was that the reaction of Eu3+ +e--> Eu2+ would influence the electron capture or transport in elements of binding protein. Another mechanism was that CaM-Ca2+ becoming CaM-Eu3+ through Eu3+ instead of Ca2+ would affect the biological activity of elements by regulating the Ca2+ level in the plant cell.  相似文献   

8.
Pyridoxal isonicotinoyl hydrazone (PIH) has recently been identified as a new iron chelating agent with a high degree of iron mobilizing activity in vitro and in vivo which makes this compound a candidate drug in the treatment of iron overload. This study was undertaken to elucidate the mechanism of action of the iron mobilizing activity of PIH at the cellular level. An in vitro system of rabbit reticulocytes with a high level of non-heme 59Fe was used as a model of iron overload. The effects of various biochemical and physiological manoeuvers on the mobilization of 59Fe by PIH from the cells were studied. The fate of [14C]-PIH in the in vitro system was also studied. Studies were also carried out using a crude mitochondrial fraction. The results indicate three phases of the iron mobilizing activity of PIH: (1) the entry of PIH into erythroid cells seems to be by passive diffusion; (2) chelation occurs mainly from mitochondria and may depend on the availability of iron in a low molecular weight, non-heme pool. Chelation seems to be enhanced by reduction of Fe (III) to Fe (II); (3) the exit of the PIH2-Fe complex is an energy-dependent process. Iron mobilization by PIH is not dependent on (Na+ + K+)-ATPase activity, external ionic composition, or external hydrogen ion concentration. Membrane fluidity does not seem to play a role in PIH-Fe mobilization. The exit of the PIH2-Fe complex is inhibited by anti-microtubule agents (vinca alkaloids but not colchicine)_suggesting that the PIH2-Fe complex is actively extruded from the cell by a microtube-dependent event.  相似文献   

9.
It has been found that addition of iron(III)-gluconate complex to rat liver mitochondria disturbed the mitochondrial Ca2+ transport. Indirect evidence when the changes in the membrane potential during the transport of Ca2+ were followed, as well as direct evidence, when the fluxes of Ca2+ were monitored by a Ca2+-selective electrode, indicated that this iron complex induced an efflux of Ca2+ from liver mitochondria. The mechanisms by which iron induced Ca2+ release appeared to be linked to the induction of lipoperoxidation of mitochondrial membrane. The mitochondrial membrane, however, did not become irreversibly damaged under these conditions, as indicated by its complete repolarization. It was also shown that the induction by iron of lipoperoxidation brought about an efflux of K+ from mitochondria.  相似文献   

10.
Effect of lanthanum on ion absorption in cucumber seedling leaves   总被引:3,自引:0,他引:3  
Scanning electron microscope and energy-dispersive X-ray analysis were used to study the tissular distributions of elements Na, Mg, Cl, K, Ca, Mn, and Fe in leaves of cucumber seedlings in the absence or presence of La3+. The results showed that the atomic percentages of Na, Mg, Cl, K, and Ca were basically reduced and those of Mn and Fe were increased in the presence of La3+; in addition, at 0.02 mM La3+, the reduced or increased degrees were higher than those at 2.0 mM La3+. The effects of La3+ on ion absorption were similar to those of Ca2+, suggesting that the rare earth element lanthanum affects the plant physiological mechanism by regulating the Ca2+ level in plant cell.  相似文献   

11.
The `push' hypothesis for the antioxidant action of Zn2+ is based on its displacement of iron from a low molecular weight pro-oxidant complex. In this study, the chemical plausibility of that proposed function is investigated by cyclic voltammetry. As a model for a pro-oxidative low molecular weight iron complex the FeII/IIIEDTA couple was examined. This complex was selected for its well-defined electrochemical, iron stability constants, and similarity to other low molecular weight chelates in physiological fluids in terms of logical binding sites, i.e. amino, and carboxylate groups. Also investigated were iron complexes of nitrilotriacetic acid and DL-glutamic acid. Results demonstrate that approximately 90% of the cyclic voltammetric peak current for FeIIIEDTA reduction and the EC′ current for the mediated reduction of H2O2 by FeII/IIIEDTA (Fenton Reaction) are lost when Zn2+ is introduced to a 1:1 molar ratio relative to iron. All experiments were conducted in HEPES buffered solutions at pH 7.4. Iron (II/III) complexes of nitrilotriacetic acid and DL-glutamic acid followed the same trends. Cyclic voltammetric experiments indicate that Zn2+ displaces FeIII from EDTA despite the much larger stability constant for the iron complex (1025.1) versus zinc (1016.50). The hydrolysis aided displacement of FeIII from EDTA by Zn2+ is considered by the equilibria modeling program, HySS. With FeIII hydrolysis products included, Zn2+ is able to achieve 90% displacement of iron from EDTA, a result consistent with cyclic voltammetric observations. Published online December 2004  相似文献   

12.
The complex of cytochrome c oxidase with NO and azide has been studied by EPR at 9.2 and 35 GHz. This complex which shows delta ms = 2 EPR triplet and strong anisotropic signals, due to the interaction of cytochrome a2+3 X NO (S = 1/2) and Cu2+B (S = 1/2), is photodissociable . Its action spectrum is similar to that of cytochrome a2+3 X NO with bands at 430, 560 and 595 nm, but shows an additional band in the near ultraviolet region. The quantum yield of the photodissociation process of cytochrome a2+3 X NO in the metal pair appears to depend on the redox state of CuB. When the photolysed sample was warmed to 77 K, a complex was observed with the EPR parameters of cytochrome a3+3 - N-3 - Cu1 +B (S = 1/2). This process of electron and ligand transfer can be reversed by heating the sample to 220 K. It is suggested that in the triplet species azide is bound to Cu2+B whereas NO is bridged between Cu2+B and the haem iron of the cytochrome a2+3. The complex has a triplet ground state and a singlet excited state with an exchange interaction J = -7.1 cm-1 between both spins. The anisotropy in the EPR spectra is mainly due to a magnetic dipole-dipole interaction between cytochrome a2+3 X NO and Cu2+B. From simulations of the triplet EPR spectra obtained at 9 and 35 GHz, a value for the distance between the nitroxide radical and Cu2+B of 0.33 nm was found. A model of the NO binding in the cytochrome a3-Cu pair shows a distance between the haem iron of cytochrome a3 and CuB of 0.45 nm. It is concluded that the cytochrome a3-CuB pair forms a cage in which the dioxygen molecule is bidentate coordinated to the two metals during the catalytic reaction.  相似文献   

13.
The activity of the ethylene-forming enzyme (EFE) in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells was almost completely abolished within 10 min by 0.4 mM of the metal-chelating agent 1,10-phenanthroline. Subsequent addition of 0.4 mM FeSO4 immediately reversed this inhibition. A partial reversion was also obtained with 0.6 mM CuSO4 and ZnSO4, probably as a consequence of the release of iron ions from the 1,10-phenanthroline complex. The inhibition was not reversed by Mn2+ or Mg2+. Tomato cells starved of iron exhibited a very low EFE activity. Addition of Fe2+ to these cells caused a rapid recovery of EFE while Cu2+, Zn2+ and other bivalent cations were ineffective. The recovery of EFE activity in iron-starved cells was insensitive to cycloheximide and therefore does not appear to require synthesis of new protein. The EFE activity in tomato cells was induced by an elicitor derived from yeast extract. Throughout the course of induction, EFE activity was blocked within 10–20 min by 1,10-phenanthroline, and the induced level was equally rapidly restored after addition of iron. We conclude that iron is an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in vivo.  相似文献   

14.
1. Micrococcus denitrificans excretes three catechol-containing compounds, which can bind iron, when grown aerobically and anaerobically in media deficient in iron, and anaerobically in medium with a high concentration of Ca2+. 2. One of these compounds was identified as 2,3-dihydroxybenzoic acid (compound I), and the other two were tentatively identified as N1N8-bis-(2,3-dihydroxybenzoyl)spermidine (compound II) and 2-hydroxybenzoyl-N-L-threonyl-N4[N1N8-bis-(2,3-dihydroxybenzoyl)]spermidine (compound III). 3. The equimolar ferric complex of compound III was prepared; compound III also forms complexes with Al3+, Cr3+ and Co2+ ions. 4. Cell-free extracts from iron-deficient organisms catalyse the formation of compound II from 2,3-dihydroxybenzoic acid and spermidine, and of compound III from compound II, L-threonine and 2-hydroxybenzoic acid; both reactions require ATP and dithiothreitol, and Mg2+ stimulates activity. The enzyme system catalysing the formation of compound II has optimum activity at pH 8.8 Fe2+ (35muM), Fe3+ (35muM) and Al3+ (65muM) inhibit the reaction by 50 percent. The enzyme system forming compound III has optimum activity at pH 8.6. Fe2+ (110 muM), Fe3+ (110 muM) and Al3+ (135 muM) inhibit the reaction by 50 percent. 5. At least two proteins are required for the formation of compound II, and another two proteins for its conversion into compound III. 6. The changes in the activities of these two systems were followed after cultures became deficient in iron. 7. Ferrous 1,10-phenanthroline is formed when a cell-free extract from iron-deficient cells is incubated with the ferric complex of compound III, succinate, NADH and 1,10-phenanthroline under N2.  相似文献   

15.
It was demonstrated that two species of paramagnetic dinitrosyl iron complex (DNIC) with neocuproine form under the following conditions: in addition of neocuproine to a solution of DNIC with phosphate; in gaseous NO treatment of a mixture of Fe(2+) + neocuproine aqueous solutions at pH 6.5-8; and in addition of Fe(2+)--citrate complex + neocuproine to a S-nitrosocysteine (cys-NO) solution. The first form of DNIC with neocuproine is characterized by an EPR signal with g-factor values of 2.087, 2.055, and 2.025, when it is recorded at 77K. At room temperature, the complex displays a symmetric singlet at g = 2.05. The second form of DNIC with neocuproine gives an EPR signal with g-factor values of 2.042, 2.02, and 2.003, which can be recorded at a low temperature only.The revealed complexes are close to DNIC with cysteine in their stability. The ability of neocuproine to bind Fe(2+) in the presence of NO with formation of paramagnetic DNICs warrants critical reevaluation of the statement that neocuproine is only able to bind Cu(+) ions. It was suggested that the observed affinity of neocuproine to iron was due to transition of Fe(2+) in DNIC with neocuproine to Fe(+). In experiments on cys-NO, it was shown that the stabilizing effect of neocuproine on this compound could be due to neocuproine binding to the iron catalyzing decomposition of cys-NO.  相似文献   

16.
Bacterioferritins are members of a class of spherical shell-like iron storage proteins that catalyze the oxidation and hydrolysis of iron at specific sites inside the protein shell, resulting in formation of a mineral core of hydrated ferric oxide within the protein cavity. Electrode oximetry/pH stat was used to study iron oxidation and hydrolysis chemistry in E. coli bacterioferritin. Consistent with previous UV-visible absorbance measurements, three distinct kinetic phases were detected, and the stoichiometric equations corresponding to each have been determined. The rapid phase 1 reaction corresponds to pairwise binding of 2 Fe(2+) ions at a dinuclear site, called the ferroxidase site, located within each of the 24 subunits, viz., 2Fe(2+) + P(Z) --> [Fe(2)-P](Z) + 4H(+), where P(Z) is the apoprotein of net charge Z and [Fe(2)-P](Z) represents a diferrous ferroxidase complex. The slower phase 2 reaction corresponds to the oxidation of this complex by molecular oxygen according to the net equation: [Fe(2)-P](Z) + (1)/(2)O(2) --> [Fe(2)O-P](Z) where [Fe(2)O-P](Z) represents an oxidized diferric ferroxidase complex, probably a mu-oxo-bridged species as suggested by UV-visible and EPR spectrometric titration data. The third phase corresponds to mineral core formation according to the net reaction: 4Fe(2+) + O(2) + 6H(2)O --> 4FeO(OH)((core)) + 8H(+). Iron oxidation is inhibited by the presence of Zn(2+) ions. The patterns of phase 2 and phase 3 inhibition are different, though inhibition of both phases is complete at 48 Zn(2+)per 24mer, i.e., 2 Zn(2+) per ferroxidase center.  相似文献   

17.
We examine the effects of fructooligosaccharides (FOS) on the reduction in the incisor iron content in gastrectomized rat. Twenty-eight 5-wk-old male Sprague-Dawley rats were divided into two groups: sham operated (bSH) and gastrectomized (bGX). After 4 wk each group was divided into two subgroups according to the presence or absence of 7.5% FOS in the synthetic diet (SH, SH+FOS, GX, and GX+FOS). At 10 wk wafter surgery, the maxilla was prepared to examine the iron content of the incisor enamel surface at four points. These points corresponded to the iron content at 6,7,8, and 10 wk, respectively. Blood was collected to determine serum iron levels at 4 and 10 wk. The serum iron level significantly decreased at 4 and 10 wk the GX group. At 10 wk, the level in the GX+FOS group significantly increased but did not reaach that in the SH group. The iron content of the enamel surface time-dependently increased and no significant differences were seen between SH and GX+FOS at 8 and 10 wk. These results suggest that FOS consumption impaired the loss of enamel content following gastrectomy, and this effect preceded the effect on the serum iron level.  相似文献   

18.
The relation of the growth-stimulating capacity of transferrin to its iron-transporting function was investigated in mouse hybridoma PLV-01 cells cultivated in a chemically defined medium. The cells were precultivated in protein-free medium supplemented either with ferric citrate (cells with a high intracellular iron level) or with iron-saturated transferrin (cells with a low intracellular iron level). Iron uptake was monitored after the application of 59Fe-labeled ferric citrate or pig transferrin. Cultivation of the cells at the optimum growth-stimulating concentration (500 microM) of ferric citrate resulted in an intracellular iron level about 100-fold higher than that of cells cultivated at the optimum transferrin concentration (5 micrograms/ml). Replacement of pig transferrin with bovine transferrin resulted in similar intracellular iron levels, but the growth-stimulating effect of bovine transferrin was more than one order of magnitude lower. Cells with a high intracellular iron level grew equally well when cultivated with iron-saturated transferrin or with apotransferrin + deferoxamine (2 micrograms/ml). On the other hand, cells with a low intracellular iron level required iron-saturated transferrin for further growth and apotransferrin + deferoxamine was ineffective. The results suggest that transferrin can act as a cell growth factor only in the iron-saturated form. However, several findings of this work indicate that supplying cells with iron cannot be accepted as the full explanation of the transferrin growth-stimulating effect.  相似文献   

19.
We sought to confirm a recent report that Fe+2 uptake into rat brush-border membrane vesicles is markedly increased by short-term consumption of iron-deficient diet, with no additional enhancement as the animal becomes functionally iron-deficient with continuing dietary Fe deprivation. In addition, we investigated whether previously observed in vivo absorption interactions of iron, zinc, and manganese occur in the brush border membrane vesicles uptake process, and whether short-term or long-term consumption of an iron-deficient diet affects the interaction at the uptake level. We did not observe any differences in Fe+2 uptake between normal and iron-deficient brush border membrane vesicles, even when the iron status contrast was intensified by feeding a high iron versus iron-deficient diet for 3 weeks. Equimolar Zn+2 and Mn+2 decreased Fe+2 uptake by 29 to 50% and 11 to 39%, respectively. Iron deficiency did not alter these effects. Equimolar Fe+2 decreased Zn+2 uptake by 13 to 22%. Calcium, included as a negative control, did not affect Fe+2 uptake. Thus, some competition between Fe+2 and similar divalent cations does occur at the level of the brush border membrane; the exact nature of this competition remains to be determined.  相似文献   

20.
2-Oxo-4-thiomethylbutyric acid (OMBA) is a widely used oxygen-radical-scavenging agent and has been used for the detection of .OH-like species in a variety of systems. This scavenger reacts with other radicals and is therefore not specific for .OH. Since iron is required in most systems for the generation of OH-like species, studies were carried out to investigate the possible interaction of OMBA with iron. Fe3+ reacted with OMBA to produce complexes that gave rise to discrete spectra. Intense purple complexes, with broad absorbance maxima of 525-550 nm, were found at OMBA/Fe3+ ratios of up to 1:1, whereas red complexes with a prominent shoulder between 440 and 480 nm were found at higher OMBA/Fe3+ ratios. OMBA caused reduction of ferric iron to the ferrous state, as detected with 2,2'-bipyridyl as the indicator. This reduction occurs in the dark, can be photo-accelerated especially by light with wavelengths near the absorbance maximum of the respective complexes, and is increased as the OMBA/Fe3+ ratio is elevated. The presence of phosphate buffer quenches the purple and red ferric-ion-OMBA complexes and lowers the rate of reduction of Fe3+ by OMBA about 10-fold. The resulting ferrous-ion-OMBA-phosphate complex is very stable against autoxidation. Both the ferrous-ion-OMBA and ferric-ion-OMBA complexes reacted with H2O2, with the subsequent production of ethylene gas from OMBA. The interaction with H2O2 resulted in discrete spectral changes of both the ferrous-ion-OMBA and ferric-ion-OMBA complexes. The ferrous-ion-OMBA/H2O2 or ferric-ion-OMBA/H2O2 system appeared to produce .OH free radicals via a Fenton-type of reaction since ethylene production was inhibited by competitive OH scavengers. Ferrous-ion-OMBA complex reacted with H2O2 not only to produce ethylene from the OMBA, but also to promote the oxidation of another scavenger, ethanol. The ability of OMBA to chelate iron, to promote reduction of ferric iron and to react with H2O2 to produce potent oxidizing radicals may play a role in the lack of specificity of OMBA as a scavenger of oxygen radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号