首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Glucuronidation is a major pathway of androgen metabolism and is catalyzed by UDP-glucuronosyltransferase (UGT) enzymes. UGT2B15 and UGT2B17 are 95% identical in primary structure, and are expressed in steroid target tissues where they conjugate C19 steroids. Despite the similarities, their regulation of expression are different; however, the promoter region and genomic structure of only the UGT2B17 gene have been characterizedX to date. To isolate the UGT2B15 gene and other novel steroid-conjugating UGT2B genes, eight P-1-derived artificial chromosomes (PAC) clones varying in length from 30 kb to 165 kb were isolated. The entire UGT2B15 gene was isolated and characterized from the PAC clone 21598 of 165 kb. The UGT2B15 and UGT2B17 genes are highly conserved, are both composed of six exons spanning approximately 25 kb, have identical exon sizes and have identical exon-intron boundaries. The homology between the two genes extend into the 5'-flanking region, and contain several conserved putative cis-acting elements including Pbx-1, C/EBP, AP-1, Oct-1 and NF/kappaB. However, transfection studies revealed differences in basal promoter activity between the two genes, which correspond to regions containing non-conserved potential elements. The high degree of homology in the 5'-flanking region between the two genes is lost upstream of -1662 in UGT2B15, and suggests a site of genetic recombination involved in duplication of UGT2B genes. Fluorescence in situ hybridization mapped the UGT2B15 gene to chromosome 4q13.3-21.1. The other PAC clones isolated contain exons from the UGT2B4, UGT2B11 and UGT2B17 genes. Five novel exons, which are highly homologous to the exon 1 of known UGT2B genes, were also identified; however, these exons contain premature stop codons and represent the first recognized pseudogenes of the UGT2B family. The localization of highly homologous UGT2B genes and pseudogenes as a cluster on chromosome 4q13 reveals the complex nature of this gene locus, and other novel homologous UGT2B genes encoding steroid conjugating enzymes are likely to be found in this region of the genome.  相似文献   

2.
We have sequenced a genomic clone of the gene encoding the mouse mitochondrial DNA polymerase. The gene consists of 23 exons, which span approximately 13.2 kb, with exons ranging in size from 53 to 768 bp. All intron-exon boundaries conform to the GT-AG rule. By comparison with the human genomic sequence, we found remarkable conservation of the gene structure; the intron-exon borders are in almost identical locations for the 22 introns. The 5' upstream region contains approximately 300 bp of homology between the mouse and human sequences that presumably contain the promoter element. This region lacks any obvious TATA domain and is relatively GC rich, consistent with the housekeeping function of the mitochondrial DNA polymerase. Finally, within the 5' flanking region, both mouse and human genes have a region of 73 bp with high homology to the tRNA-Arg gene.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Here we describe two rainbow trout major histocompatibility complex (MHC) class I genes characterized from lambda phage genomic clones prepared from a single fish. Clone GC71 contains all exons except a leader peptide-encoding exon. An open reading frame is maintained, and thus the gene MhcOnmy-U71 could be expressed in this individual. The class I gene found on clone GC41 lacks exons encoding the leader peptide and cytoplasmic domain. This gene, MhcOnmy-U41p, is a pseudogene due to a deletion in the alpha(2) domain-encoding exon causing premature termination. Both the Onmy-U71 and Onmy-U41p genes are distinguished by long introns between the exons encoding the alpha(1) and alpha(2) domains. Clone GC41 also contains the 3' exons of the LMP7/ PSMB8 gene encoding the gamma-interferon-induced proteosome subunit of rainbow trout.  相似文献   

10.
11.
The leukocyte-common antigen (CD45) is a transmembrane protein tyrosine phosphatase expressed uniquely by cells of hematopoietic origin. There are multiple isoforms of CD45 that are generated by the variable use of three exons (exons 4-6). The use of the variable exons results in changes near the amino-terminus of the mature glycoprotein. The gene is located on chromosome 1 for both human and mouse in a region that is homologous between these two species. This conserved linkage group contains a number of genes of immunological interest, such as the genes for complement regulatory proteins and the FCG2 receptor. Yeast artificial chromosomes provide a vector system in which large fragments of foreign DNA can be isolated and are suited to long-range physical mapping. To this end, three yeast artificial chromosomes containing the human CD45 gene have been isolated and characterized. They overlap to span 475 kb, establishing the largest physical map for DNA within the conserved linkage group. The CD45 gene is entirely encoded within one yeast artificial chromosome clone as determined by mapping with cDNA probes. A mouse B cell line transfected with this YAC clone expressed the low-molecular-weight isoform of the protein into the cell surface. The size of the human CD45 gene was determined to be approximately 120 +/- 10 kb.  相似文献   

12.
lambda 5 is an immunoglobulin lambda light chain-related gene which is selectively transcribed in murine pre-B lymphocytes to yield a 1.2 kb poly(A)+ mRNA. Comparison of the nucleotide sequence of a 1 kb cDNA clone with the sequence of a genomic clone isolated from 70Z/3 murine pre-B lymphoma cells shows lambda 5 is composed of three exons spanning a 3.75 kb DNA segment. Conserved splice signal sequences at all exon/intron boundaries and the presence of a long open reading frame indicate that a functional mRNA molecule can be made. Exon I contains a cap-site and a potential ATG start codon as well as sequences encoding a signal peptide. This gene could encode a lambda 5 protein of 209 amino acids which has, however, not yet been identified. The 3' portion of exon II and all of exon III shows strong sequence homologies to J lambda L and C lambda L exons. Homology to the lambda L chain genes is lost in the 5' portion of exon II and throughout exon I. In exon I short homologies to leader sequences and to VH framework 1 sequences are seen.  相似文献   

13.
G S Adrian  B W Korinek  B H Bowman  F Yang 《Gene》1986,49(2):167-175
Transferrin is a major plasma protein that transports iron to proliferating cells throughout the body. A clone containing the 5' region of the human transferrin gene has been isolated and characterized. A 14 kb EcoRI fragment was identified that contained the first 8 exons of the transferrin gene and 3.6 kb of its 5' flanking region. Conserved sequences identical or homologous to regulatory elements responding to heavy metals, glucocorticoid receptor and a putative acute phase reaction signal were identified in the 5'flanking region and intron 1. Also, the regulatory region of the transferrin gene contains a 14-bp sequence which closely matches sequences found in the interleukin-2 and gamma-interferon genes. All three genes are expressed by T lymphocytes before proliferation. A secondary loop structure similar to that proposed for the ovotransferrin gene can be formed by sequences in the 5' untranslated region of the transferrin mRNA.  相似文献   

14.
The clustering and coordinate regulation of many imprinted genes justifies positional searches for imprinted genes adjacent to known ones. We recently characterized a locus on 20q13, containing GNAS1, which has a highly complex imprinted expression pattern. In a search for neighbouring genes, we have now characterized a new gene, TH1, downstream of GNAS1. TH1 and GNAS1 are separated by more than 70 kb consisting largely of interspersed repetitive DNA. TH1 is the homologue of a gene that, in Drosophila, lies adjacent to the DNA repair gene mei-41. We have determined the full-length structures of human, mouse and Drosophila TH1. Though of unknown function, TH1 is highly conserved and widely expressed. Nonetheless, there is no similar Caenorhabditis elegans protein. We have also determined the complete genomic structures of human and Drosophila TH1. The Drosophila gene has five exons spanning 2.6 kb. The last three introns have precise equivalents in the human gene, which has 15 exons spanning 14 kb and is transcribed away from GNAS1. Using a single-nucleotide polymorphism in the 3' untranslated region, we have demonstrated biallelic TH1 expression in human fetal tissues, suggesting that, unlike GNAS1, TH1 is probably not imprinted. Immediately downstream of TH1 lies CTSZ, encoding the recently described cysteine protease, cathepsin Z. We have also elucidated the genomic structure of this gene; it has six exons spanning 12 kb and is oriented tail-to-tail with TH1, only 70 bp separating their polyadenylation sites. A polymorphism was again identified within the CTSZ 3' untranslated region and used to demonstrate biallelic expression in fetal tissues.  相似文献   

15.
We describe the isolation and characterization of the gene encoding the mouse high affinity Fc receptor Fc gamma RI. Using a mouse cDNA Fc gamma RI probe four unique overlapping genomic clones were isolated and were found to encode the entire 9 kb of the mouse Fc gamma RI gene. Sequence analysis of the gene showed that six exons account for the entire Fc gamma RI cDNA sequences including the 5'- and 3'-untranslated sequences. The first and second exons encode the signal peptide; exons 3, 4, and 5 encode the extracellular Ig binding domains; and exon 6 encodes the transmembrane domain, the cytoplasmic region, and the entire 3'-untranslated sequence. This exon pattern is similar to Fc gamma RIII and Fc epsilon RI but differs from the related Fc gamma RII gene which contains 10 exons and encodes the b1 and b2 Fc gamma RII. Southern blot analysis had shown that the mouse Fc gamma RI gene is a single copy gene with no RFLP in inbred strains of mice, but analysis of an intersubspecies backcross of mice showed that unlike other mouse FcR genes which are on mouse chromosome 1 the locus encoding Fc gamma RI, termed Fcg1, is located on chromosome 3. Interestingly, the Fcg1 locus is located near the end of a region with known linkage homology to human chromosome 1. Analysis of human x rodent somatic cell hybrid cell lines indicates that the human FCG1 locus encoding the human Fc gamma RI maps to chromosome I and therefore possibly linked to other FcR genes on this chromosome. These results suggest that the linkage relationships among these genes in the human genome are not preserved in the mouse.  相似文献   

16.
The nicotinic acetylcholine receptor of skeletal muscle (CHRN in man, Acr in mouse) is a transmembrane protein composed of four different subunits (alpha, beta, gamma, and delta) assembled into the pentamer alpha 2 beta gamma delta. These subunits are encoded by separate genes which derive from a common ancestral gene by duplication. We have used a murine full-length 1,900-bp-long cDNA encoding the gamma subunit subcloned into M 13 (clone gamma 18) to prepare single-stranded probes for hybridization to EcoRI-digested DNA from a panel of human x rodent somatic cell hybrids. Using conditions of low stringency to favor cross-species hybridization, and prehybridization with rodent DNA to prevent rodent background, we detected a single major human band of 30-40 kb. The pattern of segregation of this 30-40 kb band correlated with the segregation of human chromosome 2 within the panel and the presence of a chromosomal translocation in the distal part of the long arm of this t(X;2)(p22;q32.1) chromosome allowing the localization of the gamma subunit gene (CHRNG) to 2q32----qter. The human genes encoding the gamma and delta subunits have been shown to be contained in an EcoRI restriction fragment of approximately 20 kb (Shibahara et al., 1985). Consequently, this study also maps the delta subunit gene (CHRND) to human chromosome 2q32.1----qter. In the mouse, the Acrd and Acrg genes have been shown to be linked to Idh-1, Mylf (IDH1 and MYL1 in humans, respectively) and to the gene encoding villin on chromosome 1. Interestingly, we have recently localized the human MYL1 gene to the same chromosomal fragment of human chromosome 2. These results clearly demonstrate a region of chromosomal homoeology between mouse chromosome 1 and human chromosome 2.  相似文献   

17.
18.
19.
20.
E L Kwak  S V Torti  F M Torti 《Gene》1990,94(2):255-261
A mouse liver genomic library screened with a full-length cDNA encoding murine ferritin heavy chain (mFHC) [Torti et al., J. Biol. Chem. 263 (1988) 12638-12644] yielded a functional genomic clone mFHC. The genomic clone isolated included a region of approximately 3 kb containing four exons and three introns. Sequence comparisons of the mouse genomic clone with other genomic clones from rat, human and chicken showed a high degree of similarity among species in the coding regions. Introns and flanking sequences were less conserved. However, comparison of mFHC promoter elements with FHC genes from other species revealed common elements. Analysis of the genomic structure of FHC suggested the presence of pseudogenes. S1 nuclease analysis, however, confirmed that this mouse clone, when transfected into human MRC-5 fibroblasts, was transcribed, indicating that this clone contains an FHC functional gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号