首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We hypothesized that increased myofibrillar type 1 protein phosphatase (PP1) catalytic activity contributes to impaired aortic smooth muscle contraction after hypoxia. Our results show that inhibition of PP1 activity with microcystin-LR (50 nmol/l) or okadaic acid (100 nmol/l) increased phenylephrine- and KCl-induced contraction to a greater extent in aortic rings from rats exposed to hypoxia (10% O(2)) for 48 h than in rings from normoxic animals. PP1 inhibition also restored the level of phosphorylation of the 20-kDa myosin light chain (LC(20)) during maximal phenylephrine-induced contraction to that observed in the normoxic control group. Myofibrillar PP1 activity was greater in aortas from rats exposed to hypoxia than in normoxic rats (P < 0.05). Levels of the protein myosin phosphatase-targeting subunit 1 (MYPT1) that mediates myofibrillar localization of PP1 activity were increased in aortas from hypoxic rats (193 +/- 28% of the normoxic control value, P < 0.05) and in human aortic smooth muscle cells after hypoxic (1% O(2)) incubation (182 +/- 18% of the normoxic control value, P < 0.05). Aortic levels of myosin light chain kinase were similar in normoxic and hypoxic groups. In conclusion, after hypoxia, increased MYPT1 protein and myofibrillar PP1 activity impair aortic vasoreactivity through enhanced dephosphorylation of LC(20).  相似文献   

2.
This study was carried out to determine the role of increased vascular matrix metalloproteinase-2 (MMP-2) expression in the changes in systemic arterial contraction after prolonged hypoxia. Rats and mice were exposed to hypoxia (10% and 8% O(2), respectively) or normoxia (21% O(2)) for 16 h, 48 h, or 7 days. Aortae and mesenteric arteries were either mounted in organ bath myographs or frozen in liquid nitrogen. MMP-2 inhibition with cyclic CTTHWGFTLC (CTT) reduced contraction to phenylephrine (PE) in aortae and mesenteric arteries from rats exposed to hypoxia for 7 days but not in vessels from normoxic rats. Similarly, CTT reduced contraction to Big endothelin-1 (Big ET-1) in aortae from rats exposed to hypoxia for 7 days. Responses to PE were reduced in hypoxic MMP-2(-/-) mice compared with MMP-2(+/+) mice. Increased contraction to Big ET-1 after hypoxia was observed in MMP-2(+/+) mice but not in MMP-2(-/-) mice. Rat aortic MMP-2 and membrane type 1 (MT1)-MMP protein levels and MMP activity were increased after 7 days of hypoxia. Rat aortic MMP-2 and MT1-MMP mRNA levels were increased in the deep medial vascular smooth muscle. We conclude that hypoxic induction of MMP-2 expression potentiates contraction in systemic conduit and resistance arteries. This may preserve the capacity to regulate the systemic circulation in the transition between the alterations in vascular tone and structural remodeling that occurs during prolonged hypoxic epochs.  相似文献   

3.
The aim of this study was to determine whether the effects of hypoxia on aortic contractility reflect a decrease in smooth muscle activation [phosphorylation of the 20-kDa myosin regulatory light chain (LC(20))], the capacity for myofibrillar ATP hydrolysis (mATPase activity), or both. Our results indicate that, in endothelium-denuded aortic rings from rats exposed to hypoxia for 48 h (inspired O(2) concentration = 10%), contractions to phenylephrine and potassium chloride (KCl) are impaired compared with rings from normoxic rats. The proportion of phosphorylated to total LC(20) during aortic contraction induced by 10(-5) M phenylephrine was reduced after hypoxia (51.4 +/- 5.4% in normoxic control rats vs. 32.5 +/- 4.7% in hypoxic rats, P < 0.01). Aortic mATPase activity was also decreased (maximum ATPase rate = 29.6 +/- 3.4 and 20.7 +/- 3.7 nmol. min(-1). mg protein(-1) in control and hypoxic rats, respectively, P < 0.05). Neither proliferation nor dedifferentiation of aortic smooth muscle was evident in this model; immunostaining for smooth muscle expression of the proliferating cell nuclear antigen was negative and smooth muscle-specific isoforms of myosin heavy chains, h-caldesmon, and calponin were increased, not decreased, after hypoxic exposure. Decreased aortic reactivity after hypoxia is associated with both impairment of smooth muscle activation and diminished capacity of the actomyosin complex, once activated, to hydrolyze ATP. These changes cannot be attributed to smooth muscle dedifferentiation or to reduced contractile protein expression.  相似文献   

4.
Hemin, an oxidized form of heme, is an essential regulator of gene expression and cell cycle progression. Our laboratory previously reported (34) that chronic hemin treatment of spontaneously hypertensive rats reversed the eutrophic inward remodeling of small peripheral arteries. Whether long-term treatment of cultured vascular smooth muscle cells (VSMCs) with hemin alters the proliferation status of these cells has been unknown. In the present study, hemin treatment at 5 muM for 4, 7, 14, and 21 days significantly inhibited the proliferation of cultured rat aortic VSMCs (A-10 cells) by arresting cells at G0/G1 phases so as to decelerate cell cycle progression. Heme oxygenase (HO) activity and inducible HO-1 protein expression were significantly increased by hemin treatment. HO inhibitor tin protoporphyrin IX (SnPP) abolished the effects of hemin on cell proliferation and HO activity. Interestingly, hemin-induced HO-1 expression was further increased in the presence of SnPP. Hemin treatment had no significant effect on the expression of constitutive HO-2. Expression of p21 protein and the level of reactive oxygen species (ROS) were decreased by hemin treatment, which was reversed by application of SnPP. After removal of hemin from culture medium, inhibited cell proliferation and increased HO-1 expression in VSMCs were returned to control level within 1 wk. Transfection with HO-1 small interfering RNA significantly knocked down HO-1 expression and decreased HO activity, but had no effect on HO-2 expression, in cells treated with or without hemin for 7 days. The inhibitory effect of hemin on cell proliferation was abolished in HO-1 silenced cells. It is concluded that induction of HO-1 and, consequently, increased HO activity are responsible for the chronic inhibitory effect of hemin on VSMC proliferation. Changes in the levels of p21 and ROS might also participate in the cellular effects of hemin.  相似文献   

5.
In our previous study, econazole caused a decrease in serum nitrite levels in septic mice in vivo, but it enhanced the mortality rate. The aim of the study was to investigate the in vitro effects of econazole on receptor-operated and depolarization-induced contractions on endothelium-intact and -denuded rat isolated aorta. Econazole (0.1, 1 and 10 microM) significantly inhibited receptor-operated (phenylephrine, Phe) and depolarization (KCl)-induced contractions of endothelium-intact or -denuded rings in a noncompetitive and concentration-dependent manner. Removal of endothelium changed the pD'2 values only for KCl-induced responses. The pD'2 values of L-type calcium channel blocker nifedipine were significantly higher than the econazole on Phe concentration-response curves in endothelium-intact and -denuded rings. Econazole caused a biphasic response in precontracted by Phe or KCl in endothelium-intact and -denuded rings, first a transient contraction following sustained relaxation. Removal of endothelium did not affect the contractile responses induced by Phe. The contractile responses induced by 10 microM econazole in the KCl-precontracted rings were antagonized by the treatment of alpha-adrenergic receptor antagonist, phentolamine (10 microM). Deendothelization was significantly increased the IC50 values of econazole obtained from Phe- and KCl-precontractions. The relaxations induced by 10 microM econazole in endothelium-intact rings precontracted with Phe or KCl were not changed by NO synthase inhibitor, L-N(G)-nitroarginine (100 microM). The IC50 values of econazole were significantly higher than nifedipine in endothelium-intact and -denuded rings. These results suggest that econazole is a noncompetitive antagonist on alpha1-adrenoceptor-mediated and depolarization-induced contractions in rat isolated aorta by inhibiting Ca2+ entry through L-type calcium channels, and the endothelium seems to modulate vascular responses induced by this agent. The vascular effects of econazole may limit the usage of this agent in septic shock.  相似文献   

6.
Reactive oxygen species (ROS) increase the contractile response of airway smooth muscle (ASM). Heme oxygenase (HO) catabolizes heme to the powerful antioxidant bilirubin. Because HO is expressed in the airways, we investigated its effects on ASM contractility and ROS production in guinea pig trachea. HO expression was higher in the epithelium than in tracheal smooth muscle. Incubation of tracheal rings (TR) with the HO inhibitor tin protoporphyrin (SnPP IX) or the HO substrate hemin increased and decreased, respectively, ASM contractile response to carbamylcholine. The effect of hemin was reversed by SnPP and mimicked by the antioxidants superoxide dismutase (SOD) and catalase. Hemin significantly reduced the effect of carbamylcholine in rings treated with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), compared with ODQ-treated rings without hemin incubation, suggesting that the CO-guanosine 3',5'-cyclic monophosphate pathway was not involved in the control of tracheal reactivity. SnPP and hemin increased and decreased ROS production by TR by 18 and 38%, respectively. Bilirubin (100 pM) significantly decreased TR contractility and ROS production. Hemin, bilirubin, and SOD/catalase decreased phosphorylation of the contractile protein myosin light chain, whereas SnPP significantly augmented it. These data suggest that modulation of the redox status by HO and, moreover, by bilirubin modulates ASM contractility by modulating levels of phosphorylated myosin light chain.  相似文献   

7.

Background

Simvastatin has been shown to ameliorate pulmonary hypertension by several mechanisms in experimental animal models. In this study, we hypothesized that the major benefits of simvastatin in pulmonary hypertension occur via the heme oxygenase-1 pathway.

Methods

Simvastatin (10 mg/kgw/day) was tested in two rat models of pulmonary hypertension (PH): monocrotaline administration and chronic hypoxia. The hemodynamic changes, right heart hypertrophy, HO-1 protein expression, and heme oxygenase (HO) activity in lungs were measured in both models with and without simvastatin treatment. Tin-protoporphyrin (SnPP, 20 μmol/kg w/day), a potent inhibitor of HO activity, was used to confirm the role of HO-1.

Results

Simvastatin significantly ameliorated pulmonary arterial hypertension from 38.0 ± 2.2 mm Hg to 22.1 ± 1.9 mm Hg in monocrotaline-induced PH (MCT-PH) and from 33.3 ± 0.8 mm Hg to 17.5 ± 2.9 mm Hg in chronic hypoxia-induced PH (CH-PH) rats. The severity of right ventricular hypertrophy was significantly reduced by simvastatin in MCT-PH and CH-PH rats. Co-administration with SnPP abolished the benefits of simvastatin. Simvastatin significantly increased HO-1 protein expression and HO activity in the lungs of rats with PH; however co-administration of SnPP reduced HO-1 activity only. These observations indicate that the simvastatin-induced amelioration of pulmonary hypertension was directly related to the activity of HO-1, rather than its expression.

Conclusion

This study demonstrated that simvastatin treatment ameliorates established pulmonary hypertension primarily through an HO-1-dependent pathway.  相似文献   

8.
Prolonged hypoxia leads to the development of pulmonary hypertension. Recent reports have suggested enhancement of heme oxygenase (HO), the major source of intracellular carbon monoxide (CO), prevents hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Therefore, we hypothesized that inhibition of HO activity by tin protoporphyrin (SnPP) would exacerbate the development of pulmonary hypertension. Rats were injected weekly with either saline or SnPP (50 micromol/kg) and exposed to hypobaric hypoxia or room air for 5 wk. Pulmonary and carotid arteries were catheterized, and animals were allowed to recover for 48 h. Pulmonary and systemic pressures, along with cardiac output, were recorded during room air and acute 10% O2 breathing in conscious rats. No difference was detected in pulmonary artery pressure between saline- and SnPP-treated animals in either normoxic or hypoxic groups. However, blockade of HO activity altered both systemic and pulmonary vasoreactivity to acute hypoxic challenge. Despite no change in baseline pulmonary artery pressure, all rats treated with SnPP had decreased ratio of right ventricular (RV) weight to left ventricular (LV) plus septal (S) weight (RV/LV + S) compared with saline-treated animals. Echocardiograms suggested dilatation of the RV and decreased RV function in hypoxic SnPP-treated rats. Together these data suggest that inhibition of HO activity and CO production does not exacerbate pulmonary hypertension, but rather that HO and CO may be involved in mediating pulmonary and systemic vasoreactivity to acute hypoxia and hypoxia-induced RV function.  相似文献   

9.
Pulmonary intralobar arteries express heme oxygenase (HO)-1 and -2 and release carbon monoxide (CO) during incubation in Krebs buffer. Acute hypoxia elicits isometric tension development (0.77 +/- 0.06 mN/mm) in pulmonary vascular rings treated with 15 micromol/l chromium mesoporphyrin (CrMP), an inhibitor of HO-dependent CO synthesis, but has no effect in untreated vessels. Acute hypoxia also induces contraction of pulmonary vessels taken from rats injected with HO-2 antisense oligodeoxynucleotides (ODN), which decrease pulmonary HO-2 vascular expression and CO release. Hypoxia-induced contraction of vessels treated with CrMP is attenuated (P < 0.05) by endothelium removal, by CO (1-100 micromol/l) in the bathing buffer, and by endothelin-1 (ET-1) receptor blockade with L-754142 (10 micromol/l). CrMP increases ET-1 levels in pulmonary intralobar arteries, particularly during incubation in hypooxygenated media. CrMP also causes a leftward shift in the concentration-response curve to ET-1, which is offset by exogenous CO. In anesthetized rats, pretreatment with CrMP (40 micromol/kg iv) intensifies the elevation of pulmonary artery pressure elicited by breathing a hypoxic gas mixture. However, acute hypoxia does not elicit augmentation of pulmonary arterial pressure in rats pretreated concurrently with CrMP and the ET-1 receptor antagonist L-745142 (15 mg/kg iv). These data suggest that a product of HO activity, most likely CO, inhibits hypoxia-induced pulmonary vasoconstriction by reducing ET-1 vascular levels and sensitivity.  相似文献   

10.
目的:探讨血红素-HO-1-CO-cGMP道路对内毒素血症大鼠主动脉血管张力的影响及其分子机制。方法:用离体血管环张力测定技术,观察静脉注射脂多糖(LPS)6h,大鼠胸主动脉环(TARs)对苯肾上腺素(PE)累积收缩反应。分别用一氧化碳(CO)供体正缺血红素(He),血红素氧合酶-1(HO-1)抑制剂锌原卟啉(ZnPP-IX),鸟苷酸环化酶(sGC)抑制剂亚甲兰(MB)预卵育后,测定TARs对PE收缩反应的变化。分别测定主动脉中CO含量,HO-1活性,Western blot测定HO-1蛋白含量,RT-PCR检测HO-1 mRNA表达的改变。结果:LPS组TARs对PE累积收缩反应明显降低,ZnPP-IX可部分逆转低收缩反应,MB可完全逆转低收缩反应,而用He可加重低收缩反应状态;LPS组动脉组织中CO的含量上升,HO-1活性、蛋白表达量和mRNA表达均明显增加。结论:LPS可使主动脉HO-1基因表达上调,蛋白含量及酶活性明显增加,表明启动血红素-HO-1-CO-cGMP通路,是介导ES大鼠主动脉低收缩反应重要机制之一。  相似文献   

11.
Production of reactive oxygen species (ROS) may be increased during hypoxia in pulmonary arteries. In this study, the role of ROS in the effect of hypoxia on endothelin (ET) type B (ETB) receptor-mediated vasocontraction in lungs was determined. In rat intrapulmonary (approximately 0.63 mm ID) arteries, contraction induced by IRL-1620 (a selective ETB receptor agonist) was significantly attenuated after 4 h of hypoxia (30 mmHg Po2) compared with normoxic control (140 mmHg Po2). The effect was abolished by tiron, a scavenger of superoxide anions, but not by polyethylene glycol (PEG)-conjugated catalase, which scavenges H2O2. The hypoxic effect on ETB receptor-mediated vasoconstriction was also abolished by endothelium denudation but not by nitro-L-arginine and indomethacin. Exposure for 4 h to exogenous superoxide anions, but not H2O2, attenuated the vasoconstriction induced by IRL-1620. Confocal study showed that hypoxia increased ROS production in pulmonary arteries that were scavenged by PEG-conjugated SOD. In endothelium-intact pulmonary arteries, the ETB receptor protein was reduced after 4 h of exposure to hypoxia, exogenous superoxide anions, or ET-1. BQ-788, a selective ETB receptor antagonist, prevented these effects. ET-1 production was stimulated in endothelium-intact arteries after 4 h of exposure to hypoxia or exogenous superoxide anions. This effect was blunted by PEG-conjugated SOD. These results demonstrate that exposure to hypoxia attenuates ETB receptor-mediated contraction of rat pulmonary arteries. A hypoxia-induced production of superoxide anions may increase ET-1 release from the endothelium and result in downregulation of ETB receptors on smooth muscle.  相似文献   

12.
13.
Although hypoxia induces heme oxygenase (HO)-1 protein and mRNA expression in many cell types, hypoxia has also been shown to decrease HO-1 mRNA and protein expression. We tested the hypothesis that 24-h preexposure to hypoxia in human placental preparations suppresses HO protein expression and enzymatic function. Immortalized HTR-8/SVneo first-trimester trophoblast cells and explants of normal human chorionic villi (CV) from term placentas were cultured for 24 h in 1%, 5%, or 20% O(2). HO protein levels were determined by Western blot analysis, and microsomal HO activity was measured. HO-2 protein content was decreased by 17% and 5% in human trophoblast cells after 24-h exposure to 1% and 5% O(2), respectively, versus 20% O(2). In contrast, HO-2 protein content in CV explants was unaffected by changes in oxygenation. HO-1 protein content, which was barely detectable in both biological systems, was not affected by changes in oxygenation. Similarly, HO enzymatic activity was unchanged in both preparations after 24-h exposure to 1%, 5%, or 20% O(2). The above data do not support the hypothesis that hypoxia in the human placenta suppresses both HO protein content and HO protein function. The present observations reinforce the necessity to determine both HO protein expression and function.  相似文献   

14.
Carbon monoxide (CO), one of the products of heme oxygenase (HO) catalyzed heme degradation, is a vasodilator. The aim of the present study was to clarify the role of HO in blood flow maintenance in tumors. Male BD9 rats bearing subcutaneous transplants of the P22 carcinosarcoma tumor were treated intraperitoneally (i.p.) with either tin-protoporphyrin IX (SnPP; 45 micromol/kg), a selective inhibitor of HO or copper-protoporphyrin IX (CuPP; 45 micromol/kg), used as a negative control. The extent of HO activity inhibition was measured using a spectrophotometric assay of bilirubin production and blood flow rates to the tumor and a range of normal tissues were assessed using the uptake of the radiolabelled tracer, iodo-antipyrine ((125)I-IAP). The animals were cannulated under fentanyl citrate/fluanisone (Hypnorm)/midazolam anesthesia. In the P22 tumor, SnPP, but not CuPP, caused a complete inhibition of HO activity 15 min post-treatment. Administration of SnPP 15 min before blood flow measurements reduced tumor blood flow by 17%, with no effects in any of the normal tissues studied. However, CuPP induced a greater reduction in tumor blood flow than SnPP (45% decrease). Furthermore, CuPP caused a reduction in blood flow to the skin and small intestine but a significant increase to skeletal muscle. The current findings conclusively establish only a minor role played by the HO/CO system in the maintenance of blood flow in this tumor system, despite relatively high levels of HO-1 protein and HO activity. The results also highlight the potential usefulness of CuPP as a tumor blood flow modifier.  相似文献   

15.
Although hypoxia induces heme oxygenase (HO)-1 mRNA and protein expression in many cell types, recent studies in our laboratory using human placental tissue have shown that a preexposure to hypoxia does not affect subsequent HO enzymatic activity for optimized assay conditions (20% O2; 0.5 mM NADPH; 25 microM methemalbumin) or HO-1 protein content. One of the consequences of impaired blood flow is glucose deprivation, which has been shown to be an inducer of HO-1 expression in HepG2 hepatoma cells. The objective of the present study was to test the effects of a 24-h preexposure to glucose-deprived medium, in 0.5 or 20% O2, on HO protein content and enzymatic activity in isolated chorionic villi and immortalized HTR-8/SVneo first-trimester trophoblast cells. HO protein content was determined by Western blot analysis, and microsomal HO enzymatic activity was measured by assessment of the rate of CO formation. HO enzymatic activity was increased (P < 0.05) in both placental models after 24-h preexposure to glucose-deficient medium in 0.5 or 20% O2. Preexposure (24 h) in a combination of low O2 and low glucose concentrations decreased the protein content of the HO-1 isoform by 59.6% (P < 0.05), whereas preexposure (24 h) to low glucose concentration alone increased HO-2 content by 28.2% in chorionic villi explants (P < 0.05). In this preparation, HO enzymatic activity correlated with HO-2 protein content (r = 0.825). However, there was no correlation between HO-2 protein content and HO enzymatic activity in HTR-8/SVneo trophoblast cells preexposed to 0.5% O2 and low glucose concentration for 24 h. These findings indicate that the regulation of HO expression in the human placenta is a complex process that depends, at least in part, on local glucose and oxygen concentrations.  相似文献   

16.
目的:研究葛根素是否可对抗高糖引起的血管低反应性,并探讨其作用机制。方法:采用血管环离体灌流装置,观察SD大鼠胸主动脉环的收缩反应;测定主动脉胆红素生成量反映血红素加氧酶-1(heme oxygenase-1,HO-1)的活性。结果:①与空白对照组(含11 mmol/L葡萄糖)相比,经44 mmol/L葡萄糖(高糖)孵育血管4 h后,主动脉环对苯肾上腺素(PE)引起的血管收缩反应下降;且该作用通过内皮依赖性途径实现。②葛根素(10-10~10-8mol/L)与高糖联合孵育,可剂量依赖性地改善高糖诱导的血管PE收缩反应的下降。③葛根素孵育血管后可引起血管HO-1活性增高;用ZnPP抑制HO-1的活性后,葛根素抗高糖损伤的作用被取消。结论:葛根素具有对抗高糖引起的血管收缩功能下降的作用,其机制可能是通过诱导HO-1活性增加实现的。  相似文献   

17.
The regulation of heme oxygenase (HO) activity and its dependence on iron was studied in bovine aortic endothelial cells (BAEC) subjected to hypoxia-reoxygenation (H/R). HO activity was induced by hypoxia (10 h) and continued to increase during the reoxygenation phase. HO-1 protein levels were strongly induced by hypoxia from undetectable levels and remained elevated at least 8 h postreoxygenation. Addition of the Fe(3+) chelator desferrioxamine mesylate (DFO) or the Fe(2+) chelator o-phenanthroline during hypoxia alone or during the entire H/R period inhibited the induction of HO activity and HO-1 protein levels. However, DFO had no effect and o-phenanthroline had a partial inhibitory effect on HO activity and protein levels when added only during reoxygenation. Loading of BAEC with Fe(3+) enhanced the activation of the HO-1 gene by H/R, whereas loading with L-aminolevulinic acid, which stimulates heme synthesis, had little effect. These results suggest that chelatable iron participates in regulating HO expression during hypoxia.  相似文献   

18.

Background

Systemic hypertension may be associated with an increased pulmonary vascular resistance, which we hypothesized could be, at least in part, mediated by increased leptin.

Methods

Vascular reactivity to phenylephrine (1 μmol/L), endothelin-1 (10 nmol/L) and leptin (0.001–100 nmol/L) was evaluated in endothelium-intact and -denuded isolated thoracic aorta and pulmonary arteries from spontaneously hypertensive versus control Wistar rats. Arteries were sampled for pathobiological evaluation and lung tissue for morphometric evaluation.

Results

In control rats, endothelin-1 induced a higher level of contraction in the pulmonary artery than in the aorta. After phenylephrine or endothelin-1 precontraction, leptin relaxed intact pulmonary artery and aortic rings, while no response was observed in denuded arteries. Spontaneously hypertensive rats presented with increased reactivity to phenylephrine and endothelin-1 in endothelium-intact pulmonary arteries. After endothelin-1 precontraction, endothelium-dependent relaxation to leptin was impaired in pulmonary arteries from hypertensive rats. In both strains of rats, aortic segments were more responsive to leptin than pulmonary artery. In hypertensive rats, pulmonary arteries exhibited increased pulmonary artery medial thickness, associated with increased expressions of preproendothelin-1, endothelin-1 receptors type A and B, inducible nitric oxide synthase and decreased endothelial nitric oxide synthase, together with decreased leptin receptor and increased suppressor of cytokine signaling 3 expressions.

Conclusions

Altered pulmonary vascular reactivity in hypertension may be related to a loss of endothelial buffering of vasoconstriction and decreased leptin-induced vasodilation in conditions of increased endothelin-1.  相似文献   

19.
The hemodynamic response to reductions insystemic oxygen availability serves to redistribute blood flow andmaintain vital organ function. The efficacy of this response depends onthe degree to which hypoxia alters the function of the vascular tissuesthemselves. In this study we have evaluated these effects in ratsexposed to 10% oxygen for 0 (control), 12, and 48 h and for 48 hfollowed by 12 h of normoxic recovery. In aortic segments from eachgroup, the cumulative concentration response relationships wereconstructed for phenylephrine and KCl. Maximum tension generated duringactivation by these agents was reduced after both 12 and 48 h ofhypoxic exposure. After 48 h of hypoxia, the maximum tension duringactivation by phenylephrine was 0.46 ± 0.04 vs. 1.31 ± 0.09 g/mg dry wt for the control group (P < 0.05 for difference). The maximum tension during activation by KClwas similarly affected (0.32 ± 0.02 vs. 0.98 ± 0.06 g/mg dry wt, 48 h of hypoxia vs. control,respectively; P < 0.05 fordifference). Exposure to hypoxia did not alter the EC50 for either agent. Twelvehours of normoxic recovery did not fully restore contractility after 48 h of hypoxia. In aortic rings from control rats, endothelial removalenhanced contraction, whereas, in rings from rats exposed to hypoxia,removal of the endothelium was associated with a decrease in maximumtension. Prolonged exposure to hypoxia results in impairment ofsystemic arterial smooth muscle contractility. This is partlycompensated by the release of vasoconstricting substances from theendothelium.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号