首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simvastatin has been shown to have antiinflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these antiinflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on toll-like receptor (TLR) signaling in primary human monocytes was investigated. A short pretreatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor (TNF)-α in response to TLR8 activation (but not TLR2, -4 or -5). Statins are known inhibitors of the cholesterol biosynthetic pathway, but, intriguingly, TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate, downstream products of cholesterol biosynthesis. TLR8 signaling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited I kappa B kinase (IKK)α/β phosphorylation and subsequent nuclear factor (NF)-κB activation without affecting the pathway to activating protein-1 (AP-1). Because simvastatin has been reported to have antiinflammatory effects in RA patients and TLR8 signaling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model, which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signaling that may in part explain its beneficial antiinflammatory effects.  相似文献   

2.
We have demonstrated that myocardial ATP-sensitive potassium (K(ATP)) channels are implicated in the development of cardiac hypertrophy in hyperlipidemic rabbits. We investigated the effect of pravastatin on development of ventricular hypertrophy in male normolipidemic Wistar rats with two-kidney, one-clip (2K1C) hypertension and whether the attenuated hypertrophic effect was via activation of K(ATP) channels. Twenty-four hours after the left renal artery was clipped, rats were treated with one of the following therapies for 8 wk: vehicle, nicorandil (an agonist of K(ATP) channels), pravastatin, glibenclamide (an antagonist of K(ATP) channels), hydralazine, nicorandil plus glibenclamide, or pravastatin plus glibenclamide. Systolic blood pressure, relative left ventricular (LV) weight, and cardiomyocyte sizes significantly increased in vehicle-treated 2K1C rats compared with those in sham-operated rats. Treatment with either nicorandil or pravastatin significantly attenuated LV hypertrophy/body weight compared with the vehicle, which was further confirmed by downregulation of LV atrial natriuretic peptide mRNA. Nicorandil-induced effects were abolished by administering glibenclamide. Similarly, pravastatin-induced beneficial effects were reversed by the addition of glibenclamide, implicating K(ATP) channels as the relevant target. A dissociation between the effects of blood pressure and cardiac structure was noted because pravastatin and hydralazine reduced arterial pressure similarly. These results suggest a crucial role of cardiac K(ATP) channel system in the development of ventricular hypertrophy in the 2K1C hypertensive rats. Pravastatin is endowed with cardiac antihypertrophic properties probably through activation of K(ATP) channels, independent of lipid and hemodynamic changes.  相似文献   

3.
The pig heart grows rapidly in the first few days after birth. We examined the effects of simvastatin, atorvastatin, and pravastatin on heart growth in piglets. After vehicle, 2 mg x kg(-1) x day(-1) simvastatin, 2 mg x kg(-1) x day(-1) atorvastatin, or 4 mg x kg(-1) x day(-1) pravastatin were administered orally for 6 days, the thoracic cavity was opened, and the heart was removed under pentobarbital sodium (30 mg/kg ip) anesthesia. The heart was perfused to remove residual blood. After the heart was blotted dry, the right and left ventricular free walls were dissected. Each free wall was weighed and used for determination of DNA, RNA, and protein concentrations and mitogen-activated protein (MAP) kinase activity. Simvastatin and atorvastatin resulted in smaller increases with age in the weight, concentrations of RNA and protein, and activity of MAP kinase in the left ventricular free wall, whereas pravastatin did not. The parameters of heart growth in the right ventricular free wall were not appreciably affected by either drug. The blood pressure and heart rate were not changed by the treatments. These results suggest that simvastatin and atorvastatin interfere with heart growth in neonatal piglets after birth, especially in the left ventricular free wall.  相似文献   

4.
Endothelin (ET)-1 has been implicated in the development of cardiac hypertrophy. We investigated the effect of pravastatin on development of ventricular hypertrophy in spontaneously hypertensive rats (SHR) and whether the attenuated hypertrophic effect was via reduced ET-1 expression. Normolipidemic SHR were treated with one of the following therapies for 8 wk: vehicle, the nonselective ET receptor antagonists bosentan, pravastatin, mevalonate, hydralazine, or combination of pravastatin + mevalonate from the age of 8 wk at the very early stage of cardiac hypertrophy. Treatment with bosentan and pravastatin significantly decreased left ventricular mass index for body weight and cardiomyocyte sizes isolated by enzymatic dissociation. The myocardial ET-1 levels and preproET-1 mRNA assessed using real-time quantitative RT-PCR were significantly higher (both P < 0.001) in the SHR compared with Wistar-Kyoto rats. The increased tissue ET-1 levels can be inhibited after pravastatin administration. Immunohistochemical analysis confirmed the changes of ET-1. Left ventricular mass index for body weight correlated positively with tissue ET-1 levels (P = 0.0004). A dissociation between the effects of blood pressure and cardiac structure was noted, because pravastatin and hydralazine reduced arterial pressure similarly. Pravastatin-induced effects were reversed by the addition of mevalonate. In conclusion, these results suggest a crucial role of cardiac endothelin system in the early development of ventricular hypertrophy in the SHR. Pravastatin is endowed with cardiac antihypertropic properties that are independent of its hemodynamic and hypolipidemic effects and appear to be related to their capacity to decrease cardiac ET-1 levels, which is linked to mevalonate metabolism.  相似文献   

5.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors have been shown to prevent or reverse hypertrophy of the LV in several models of left ventricular hypertrophy. The aim of the present study was to determine whether treatment with simvastatin can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) remodeling in NG-nitro-L-arginine methyl ester(L-NAME)-induced hypertension. Four groups of rats were investigated: control, simvastatin (10 mg/kg), L-NAME (40 mg/kg) and L-NAME + simvastatin (in corresponding doses). Animals were sacrificed and studied after 6 weeks of treatment. The decrease of NO-synthase activity in the LV, kidney and brain was associated with hypertension, LV hypertrophy and fibrosis development and remodeling of the aorta in the L-NAME group. Simvastatin attenuated the inhibition of NO-synthase activity in kidney and brain, partly prevented hypertension development and reduced the concentration of coenzyme Q in the LV. Nevertheless, myocardial hypertrophy, fibrosis and enhancement of DNA concentration in the LV, and remodeling of the aorta were not prevented by simultaneous simvastatin treatment in the L-NAME treated animals.We conclude that the HMG-CoA reductase inhibitor simvastatin improved nitric oxide production and partially prevented hypertension development, without preventing remodeling of the left ventricle and aorta in NO-deficient hypertension.  相似文献   

6.
Recently, statins have been being studied for their proapoptic and antimetastatic effects. However, the exact mechanisms of their anticancer action are still unclear. Dolichyl phosphate is a nonsterol isoprenoid derivative in the mevalonate pathway that affects the expression of the Insulin-like growth factor 1 receptor (IGF-1R). IGF-1R activation is required for prostate cell proliferation; therefore, IGF-1R inhibitory agents may be of preventive and/or therapeutic value. In this study, the effects of simvastatin on IGF-1R signaling in prostate cancer PC-3 cells were examined. Simvastatin suppressed proliferation and induced apoptosis of PC-3, and the expression of IGF-1R was suppressed by simvastatin. Knockdown of IGF-1R by siRNA led to inhibition of proliferation of PC-3. Simvastatin also inhibited IGF-1-induced activation of both ERK and Akt signaling and IGF-1-induced PC-3 cell proliferation. Our results suggest statins are potent inhibitors of the IGF-1/IGF-1R system in prostate cancer cells and may be beneficial in prostate cancer treatment.  相似文献   

7.
3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors increase endothelial nitric oxide synthase (eNOS) activity by multiple mechanisms. We previously reported that genetic overexpression of eNOS improves survival and cardiac function in congestive heart failure (CHF). In the present study, we tested the hypothesis that low-dose treatment with an 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor exerts beneficial effects on survival and/or cardiac function in a murine model of CHF. Mice were subjected to permanent ligation of the left coronary artery and randomized to receive either saline vehicle or simvastatin (0.25 mg/kg) 2 h after myocardial infarction and daily (0.25 mg/kg) for 7 days, followed by 21 days of administration every other day for a total duration of 28 days. Myocardial infarct size was not reduced by simvastatin therapy (P = not significant between groups). Simvastatin treatment did significantly (P < 0.05) improve survival (45%) compared with vehicle treatment (25%). In addition, simvastatin treatment significantly improved (P < 0.01) left ventricular function and significantly (P < 0.01) abrogated cardiac hypertrophy and pulmonary edema compared with vehicle treatment. The protective effects of simvastatin were abrogated by delayed initiation of treatment or genetic ablation of eNOS. In conclusion, low-dose simvastatin therapy significantly improves survival and cardiac function and reduces both cardiac hypertrophy and pulmonary edema via an eNOS-dependent mechanism in a murine model of CHF.  相似文献   

8.
9.
The 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase inhibitor, simvastatin, has been shown to attenuate chronic hypoxic pulmonary hypertension (CHPH). Here, we assess whether simvastatin is capable of inducing regression of established CHPH and explore potential mechanisms of statin effect. Rats (n = 8 in each group) were exposed to chronic hypoxia (10% Fi(O(2))) for 2 or 4 wk. Simvastatin treatment (20 mg.kg(-1).day(-1)) commenced after 2 wk of hypoxia, at which time CHPH was fully established, reduced mean pulmonary artery pressure (19 +/- 0.5 vs. 27 +/- 0.9 mmHg; P < 0.001), the ratio of right ventricular free wall to left ventricular plus septal weight (0.41 +/- 0.03 vs. 0.54 +/- 0.03; P < 0.001), and medial thickening of small pulmonary arteries (13 +/- 0.4 vs. 16 +/- 0.4%; P < 0.01) compared with 4-wk hypoxic controls. Supplementation with mevalonate (50 mg.kg(-1).day(-1)) prevented the attenuation of CHPH induced by simvastatin during 2 wk of hypoxia. Because statins are known to inhibit Rho-kinase (ROCK), we determined expression of ROCK-1 and -2 in whole lung by Western blot and ROCK activity by phosphorylation of the myosin-binding subunit of myosin phosphatase. Expression of both ROCK-1 and -2 were markedly diminished in simvastatin-treated animals during normoxia and hypoxia (2- and 4-wk) exposure (P < 0.01). ROCK activity was increased threefold under hypoxic conditions and normalized with simvastatin treatment (P < 0.001). We conclude that simvastatin attenuates and induces regression of established CHPH through inhibition of HMG-CoA reductase. Inhibition of ROCK expression and activity may be an important mechanism of statin effect.  相似文献   

10.
The present study was carried out to determine whether beneficial effects of carvedilol in congestive heart failure (CHF) are mediated via its beta-adrenergic blocking, antioxidant, and/or alpha-adrenergic blocking action. Rabbits with heart failure induced by rapid cardiac pacing were randomized to receive subcutaneous carvedilol, metoprolol, propranolol plus doxazosin, or placebo pellets for 8 wk and compared with sham-operated rabbits without pacing. We found rapid cardiac pacing produced clinical heart failure, left ventricular dilation, and decline of left ventricular fractional shortening. This was associated with an increase in left ventricular end-diastolic pressure, decrease in left ventricular first derivative of left ventricular pressure, and myocyte hypertrophy. Tissue oxidative stress measured by GSH/GSSG was increased in the heart with increased oxidation product of mitochondrial DNA, 8-oxo-7,8-dihydro-2'-deoxyguanosine, increase of Bax, decrease of Bcl-2, and increase of apoptotic myocytes as measured by anti-single-stranded DNA monoclonal antibody. Administration of carvedilol and metoprolol, which had no effect in sham animals, attenuated cardiac ventricular remodeling, cardiac hypertrophy, oxidative stress, and myocyte apoptosis in CHF. In contrast, propranolol plus doxazosin, which has less antioxidant effects, produced smaller effects on left ventricular function and myocyte apoptosis. In all animals, GSH/GSSG correlated significantly with changes of left ventricular end-diastolic dimension (r = -0.678, P < 0.0001), fractional shortening (r = 0.706, P < 0.0001), and apoptotic myocytes (r = -0.473, P = 0.0001). Thus our findings suggest antioxidant and antiapoptotic actions of carvedilol and metoprolol are important determinants of clinical beneficial effects of beta-receptors in the treatment of CHF.  相似文献   

11.
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor simvastatin is able to produce endothelium-dependent relaxation in addition to its lipid-lowering properties. The underlying mechanisms were investigated in bovine aortic endothelial cells (BAEC). Simvastatin induced an increase in cytosolic calcium ([Ca(2+)](i)) in BAEC, by releasing Ca(2+) from intracellular stores sensitive to thapsigargin and ryanodine, and increasing Ca(2+) entry. Simvastatin response was not altered by the phospholipase A(2) inhibitor ONO-RS-082, or the combination of superoxide dismutase plus catalase. However, the response to simvastatin was reduced by the product of HMG-CoA reductase, mevalonate or by the inhibitor of small G proteins of the Rho family, Clostridium botulinum C3 toxin. Thus, increase in [Ca(2+)](i) involving the activation of Rho protein through mevalonate-dependent pathway is essential for the action of simvastatin and might contribute to its beneficial effects against vascular diseases. This study helps elucidate the mechanisms of endothelial factor generation by simvastatin in BAEC.  相似文献   

12.
Liu J  Shen Q  Wu Y 《Life sciences》2008,82(19-20):991-996
  相似文献   

13.
Myocardial ATP-sensitive potassium (K(ATP)) channels have been implicated in attenuating cardiac hypertrophy by modulating endothelin-1 concentrations. Sulfonylureas differ in their affinity for cardiac K(ATP) channels and therefore may vary in their effects on left ventricular (LV) mass. We sought to determine the differential effects of sulfonylureas on LV mass in type 2 diabetic patients. All patients had been taking glibenclamide for more than 3 mo before being randomized to either switch to an equipotent dose of gliclazide or continue glibenclamide. A total of consecutive 240 diabetic patients were randomized into glibenclamide, gliclazide, a combination of glibenclamide and nicorandil, or gliclazide and nicorandil for 6 mo. In the gliclazide-treated group, the LV mass index was significantly decreased compared with that in the glibenclamide-treated groups. Nicorandil administration significantly reduced LV mass in glibenclamide-treated patients compared with patients treated with glibenclamide alone. Measurements of endothelin-1 concentrations mirrored the functional status of K(ATP) channel. Multivariate analysis revealed that regression of LV mass was significantly correlated only with the changes in endothelin-1 (P < 0.0001). Our results show that K(ATP) channels may play a pathogenetic role, probably through an endothelin-1-dependent pathway, in diabetes mellitus-related ventricular hypertrophy. Patients treated with gliclazide may have a beneficial effect in attenuating ventricular mass.  相似文献   

14.
Sodium/hydrogen exchange (NHE) inhibitors show promise as potential therapeutic agents for the treatment of heart failure, but it is not known whether they can reverse the maladaptive remodeling that results in heart failure. We sought to determine the effect of the NHE-1-specific inhibitor EMD-87580 (EMD) on heart failure produced by myocardial infarction in the rat and to assess whether up to 4 wk of treatment delay results in beneficial effects. Male Sprague-Dawley rats were subjected to coronary artery ligation (or a sham procedure) and followed for up to 3 mo, at which time hypertrophy and hemodynamics were determined. EMD was provided in the diet, and treatment commenced immediately or 2-4 wk after ligation. EMD significantly reduced hemodynamic abnormalities, including the elevation in left ventricular end-diastolic pressure, and diminished the loss of systolic function with all treatment protocols. Left ventricular dilatation and hypertrophy, as assessed by heart weight, cell size, and atrial natriuretic peptide (ANP) expression, were similarly reversed to sham or near-sham levels. In addition, the increased plasma ANP and pro-ANP values were reversed to levels not significantly different from sham. Surprisingly, virtually all beneficial effects were identical with all treatment protocols. These effects were observed in the absence of infarct size reduction or blood pressure-lowering effects. Our results suggest that NHE-1 inhibition attenuates and reverses postinfarction remodeling and heart failure with a treatment delay of up to 4 wk after infarction. The effect is independent of infarct size or afterload reduction, indicating a direct effect on the myocardium.  相似文献   

15.

Background

Simvastatin has been shown to ameliorate pulmonary hypertension by several mechanisms in experimental animal models. In this study, we hypothesized that the major benefits of simvastatin in pulmonary hypertension occur via the heme oxygenase-1 pathway.

Methods

Simvastatin (10 mg/kgw/day) was tested in two rat models of pulmonary hypertension (PH): monocrotaline administration and chronic hypoxia. The hemodynamic changes, right heart hypertrophy, HO-1 protein expression, and heme oxygenase (HO) activity in lungs were measured in both models with and without simvastatin treatment. Tin-protoporphyrin (SnPP, 20 μmol/kg w/day), a potent inhibitor of HO activity, was used to confirm the role of HO-1.

Results

Simvastatin significantly ameliorated pulmonary arterial hypertension from 38.0 ± 2.2 mm Hg to 22.1 ± 1.9 mm Hg in monocrotaline-induced PH (MCT-PH) and from 33.3 ± 0.8 mm Hg to 17.5 ± 2.9 mm Hg in chronic hypoxia-induced PH (CH-PH) rats. The severity of right ventricular hypertrophy was significantly reduced by simvastatin in MCT-PH and CH-PH rats. Co-administration with SnPP abolished the benefits of simvastatin. Simvastatin significantly increased HO-1 protein expression and HO activity in the lungs of rats with PH; however co-administration of SnPP reduced HO-1 activity only. These observations indicate that the simvastatin-induced amelioration of pulmonary hypertension was directly related to the activity of HO-1, rather than its expression.

Conclusion

This study demonstrated that simvastatin treatment ameliorates established pulmonary hypertension primarily through an HO-1-dependent pathway.  相似文献   

16.
Arginine vasopressin (AVP) has been shown to directly induce neonatal rat cardiac fibroblasts (CFs) proliferation, a major component involved in cardiac hypertrophy. Herein, we explored whether AVP is also a growth factor for adult rat CFs and, if so, whether the growth effect could be inhibited by simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor. AVP significantly increased DNA synthesis in adult rat CFs by 73.5 +/- 5.1% (P < or = 0.05), an effect inhibited by V1 receptor antagonist, d(CH(2))(5)[Tyr(2)(Me), Arg(8)]-vasopressin. AVP also activated extracellular signal-regulated kinase 1/2 (ERK1/2) as assessed by MBP phosphotransferase activity (5.1 +/- 0.6 fold over basal level, P < or = 0.05) and Western blot analysis, and effects were mimicked by protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), but abolished by inhibiting cellular PKC through chronic PMA incubation. In addition, AVP induced PKC activation (27.2 +/- 3.8% from a basal value of 9.3 +/- 0.7%, P < or = 0.05). AVP-induced increase in DNA synthesis could be attenuated by the specific inhibitors of ERK1/2 (PD98059), PI3K (LY294002), and AKT (1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, HIMO). Simvastatin inhibited the effects of AVP on DNA synthesis, ERK1/2, and PKC activation in a dose-dependent manner. Phosphatidylinositol-3-kinase (PI3K)-dependent AKT activation induced by AVP was also inhibited by simvastatin. The effects of simvastatin on ERK1/2, PKC, and AKT activation and DNA synthesis could be reversed by mevalonate. These results support a growth-inducing effect of AVP on adult rat CFs through ERK and AKT signalings and the growth effect could be attenuated by simvastatin via inhibiting these two pathways.  相似文献   

17.
细胞液中乙酰辅酶A的持续供应是脂肪酸高效积累的必要条件。考虑到甲羟戊酸和脂肪酸合成途径共用相同的前体乙酰辅酶A,抑制甲羟戊酸途径可能促使更多的乙酰辅酶A流向脂肪酸合成。通过添加前体物质或/和甲羟戊酸途径酶的抑制剂以强化乙酰辅酶A的供应,即在裂殖壶菌发酵起始或/和后期添加乙酸、发酵起始添加甲羟戊酸途径酶的抑制剂辛伐他汀或柠檬酸、发酵起始同时添加乙酸和辛伐他汀或柠檬酸并考察其对裂殖壶菌合成二十二碳六烯酸 (DHA)的影响,结果发现发酵起始同时添加6mmol/L的乙酸和1μmol/L的辛伐他汀时,DHA产量最高,达到13.21g/L,比对照提高了46.61%。  相似文献   

18.
宋俊燕  孔涛  吴娜  宁阳根 《生物磁学》2011,(11):2037-2040
目的:研究异丙肾上腺素诱导的病理性心肌肥厚大鼠心肌组织及血浆中钠氢交换体1(sodium—hydrogen exchanger1,NHE—1)的表达,探讨NHE1在心肌肥厚发生和发展中的作用。方法:30只雄性SD大鼠随机并平均分为2组:病理性心肌肥厚组和对照组,每组15只,病理性心肌肥厚组(以下简称ISO组)予以ISO(异丙肾上腺素)连续每日以20、10和5mg/kg的剂量递减皮下注射,再以3mg/kg的剂量维持皮下注射7d,对照组予相同剂量生理盐水皮下注射。给药结束后进行心脏超声检测左室舒张末径(LVEDD)、左室收缩末径(LVESD)、室间隔厚度(IVST)、短轴缩短率(FS)、左室射血分数(LVEF)。分别测定各组大鼠体重(Bw)、心室重量(VW)、左心室重量(LVW),计算心室重量指数VWI(VW/BW)、左心室重量指数LVWI(LVW/BW)。取血检测血浆中NHE.1的浓度,并取心肌组织观察病理形态学特征,用免疫组化法检测心肌组织中NHE—1的表达量。结果:与对照组相比,ISO组大鼠LVEF、IVST显著增加(P〈0.05),LVESD明显降低(P〈0.05),VWI、LVWI明显增加(P〈0.01),血浆NHE—1浓度明显升高(P〈0.01),心肌组织NHE-1表达增多(P〈0.01)。结论:NHE-1可能在病理性心肌肥厚的发生和发展过程中起着重要作用。  相似文献   

19.
Recently we reported that statins, the competitive inhibitors of the key enzyme regulating the mevalonate pathway, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), decrease proliferation of human endometrial stromal (HES) cells. Furthermore, we found that simvastatin treatment reduces the number and the size of endometrial implants in a nude mouse model of endometriosis. The present study was undertaken to investigate the effect of simvastatin on HES cell invasiveness and on expression of selected genes relevant to invasiveness: matrix metalloproteinase 2 (MMP2), MMP3, tissue inhibitor of matrix metalloproteinase 2 (TIMP2), and CD44. Because statin-induced inhibition of HMGCR reduces the production of substrates for isoprenylation-geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP)-the effects of GGPP and FPP were also evaluated. Simvastatin induced a concentration-dependent reduction of invasiveness of HES cells. This effect of simvastatin was abrogated by GGPP but not by FPP. Simvastatin also reduced the mRNA levels of MMP2, MMP3, and CD44, but increased TIMP2 mRNA; all these effects of simvastatin were partly or entirely reversed in the presence of GGPP. The present findings provide a novel mechanism of action of simvastatin on endometrial stroma that may explain reduction of endometriosis in animal models of this disease. Furthermore, the presently described effects of simvastatin are likely mediated, at least in part, by inhibition of geranylgeranylation.  相似文献   

20.
These studies explore the effects of statins on cyclic AMP-modulated signaling pathways in vascular endothelial cells. We previously observed (Kou, R., Sartoretto, J., and Michel, T. (2009) J. Biol. Chem. 284, 14734-14743) that simvastatin treatment of endothelial cells leads to a marked decrease in PKA-modulated phosphorylation of the protein VASP. Here we show that long-term treatment of mice with simvastatin attenuates the vasorelaxation response to the β-adrenergic agonist isoproterenol, without affecting endothelin-induced vasoconstriction or carbachol-induced vasorelaxation. We found that statin treatment of endothelial cells dose-dependently inhibits PKA activation as assessed by analyses of serine 157 VASP phosphorylation as well as Epac-mediated Rap1 activation. These effects of simvastatin are completely reversed by mevalonate and by geranylgeranyl pyrophosphate, implicating geranylgeranylation as a critical determinant of the stain response. We used biochemical approaches as well as fluorescence resonance energy transfer (FRET) methods with a cAMP biosensor to show that simvastatin treatment of endothelial cells markedly inhibits cAMP accumulation in response to epinephrine. Importantly, simvastatin treatment significantly decreases Gα(s) abundance, without affecting other Gα subunits. Simvastatin treatment does not influence Gα(s) protein stability, and paradoxically increases the abundance of Gα(s) mRNA. Finally, we found that simvastatin treatment inhibits Gα(s) translation mediated by Akt/mTOR/eIF4/4EBP. Taken together, these findings establish a novel mechanism by which simvastatin modulates β-adrenergic signaling in vascular wall, and may have implications for cardiovascular therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号