首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FungiFun assigns functional annotations to fungal genes or proteins and performs gene set enrichment analysis. Based on three different classification methods (FunCat, GO and KEGG), FungiFun categorizes genes and proteins for several fungal species on different levels of annotation detail. It is web-based and accessible to users without any programming skills. FungiFun is the first tool offering gene set enrichment analysis including the FunCat categorization. Two biological datasets for Aspergillus fumigatus and Candida albicans were analyzed using FungiFun, providing an overview of the usage and functions of the tool. FungiFun is freely accessible at https://www.omnifung.hki-jena.de/FungiFun/.  相似文献   

2.
MOTIVATION: Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. RESULTS: The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. AVAILABILITY: BFAB is available at http://mips.gsf.de/proj/bfab  相似文献   

3.
4.
5.
6.
Adams MA  Suits MD  Zheng J  Jia Z 《Proteomics》2007,7(16):2920-2932
The combination of genomic sequencing with structural genomics has provided a wealth of new structures for previously uncharacterized ORFs, more commonly referred to as hypothetical proteins. This rapid growth has been the direct result of high-throughput, automated approaches in both the identification of new ORFs and the determination of high-resolution 3-D protein structures. A significant bottleneck is reached, however, at the stage of functional annotation in that the assignment of function is not readily automatable. It is often the case that the initial structural analysis at best indicates a functional family for a given hypothetical protein, but further identification of a relevant ligand or substrate is impeded by the diversity of function in a particular structural classification of proteins family, a highly selective and specific ligand-binding site, or the identification of a novel protein fold. Our approach to the functional annotation of hypothetical proteins relies on the combination of structural information with additional bioinformatics evidence garnered from operon prediction, loose functional information of additional operon members, conservation of catalytic residues, as well as cocrystallization trials and virtual ligand screening. The synthesis of all available information for each protein has permitted the functional annotation of several hypothetical proteins from Escherichia coli and each assignment has been confirmed through generally accepted biochemical methods.  相似文献   

7.
8.
9.

Background

Clustering is a widely used technique for analysis of gene expression data. Most clustering methods group genes based on the distances, while few methods group genes according to the similarities of the distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an increasing number of genes have been annotated into functional categories. As a result, evaluating the performance of clustering methods in terms of the functional consistency of the resulting clusters is of great interest.

Results

In this paper, we proposed the WDCM (Weibull Distribution-based Clustering Method), a robust approach for clustering gene expression data, in which the gene expressions of individual genes are considered as the random variables following unique Weibull distributions. Our WDCM is based on the concept that the genes with similar expression profiles have similar distribution parameters, and thus the genes are clustered via the Weibull distribution parameters. We used the WDCM to cluster three cancer gene expression data sets from the lung cancer, B-cell follicular lymphoma and bladder carcinoma and obtained well-clustered results. We compared the performance of WDCM with k-means and Self Organizing Map (SOM) using functional annotation information given by the Gene Ontology (GO). The results showed that the functional annotation ratios of WDCM are higher than those of the other methods. We also utilized the external measure Adjusted Rand Index to validate the performance of the WDCM. The comparative results demonstrate that the WDCM provides the better clustering performance compared to k-means and SOM algorithms. The merit of the proposed WDCM is that it can be applied to cluster incomplete gene expression data without imputing the missing values. Moreover, the robustness of WDCM is also evaluated on the incomplete data sets.

Conclusions

The results demonstrate that our WDCM produces clusters with more consistent functional annotations than the other methods. The WDCM is also verified to be robust and is capable of clustering gene expression data containing a small quantity of missing values.  相似文献   

10.
SUMMARY: The R package HCGene (Hierarchical Classification of Genes) implements methods to process and analyze the Gene Ontology and the FunCat taxonomy in order to support the functional classification of genes. HCGene allows the extraction of subgraphs and subtrees related to specific biological problems, the labeling of genes and gene products with multiple and hierarchical functional classes, and the association of different types of bio-molecular data to genes for learning to predict their functions. AVAILABILITY: http://homes.dsi.unimi.it/~valenti/SW/hcgene/download/hcgene_1.0.tar.gz.  相似文献   

11.
SWISS-PROT, a curated protein sequence data bank, contains not only sequence data but also annotation relevant to a particular sequence. The annotation added to each entry is done by a team of biologists and comes, primarily, from articles in journals reporting the actual sequencing and sometimes characterisation. Review articles and collaboration with external experts also play a role along with the use of secondary databases like PROSITE and Pfam in addition to a variety of feature prediction methods. Annotation added by these methods is checked for relevance and likelihood to a particular sequence. The onset of genome sequencing has led to a dramatic increase in sequence data to be included in SWISS-PROT. This has led to the production of TrEMBL (Translation of the EMBL database). TrEMBL consists of entries in a SWISS-PROT format that are derived from the translation of all coding sequences in the EMBL nucleotide sequence database, that are not in SWISS-PROT. Unlike SWISS-PROT entries those in TrEMBL are awaiting manual annotation. However, rather than just representing basic sequence and source information, steps have been taken to add features and annotation automatically. In taking these steps it is hoped that TrEMBL entries are enhanced with some indication as to what a protein is, could or may be.  相似文献   

12.
Next‐generation technologies generate an overwhelming amount of gene sequence data. Efficient annotation tools are required to make these data amenable to functional genomics analyses. The Mercator pipeline automatically assigns functional terms to protein or nucleotide sequences. It uses the MapMan ‘BIN’ ontology, which is tailored for functional annotation of plant ‘omics’ data. The classification procedure performs parallel sequence searches against reference databases, compiles the results and computes the most likely MapMan BINs for each query. In the current version, the pipeline relies on manually curated reference classifications originating from the three reference organisms (Arabidopsis, Chlamydomonas, rice), various other plant species that have a reviewed SwissProt annotation, and more than 2000 protein domain and family profiles at InterPro, CDD and KOG. Functional annotations predicted by Mercator achieve accuracies above 90% when benchmarked against manual annotation. In addition to mapping files for direct use in the visualization software MapMan, Mercator provides graphical overview charts, detailed annotation information in a convenient web browser interface and a MapMan‐to‐GO translation table to export results as GO terms. Mercator is available free of charge via http://mapman.gabipd.org/web/guest/app/Mercator .  相似文献   

13.
Since the advent of investigations into structural genomics, research has focused on correctly identifying domain boundaries, as well as domain similarities and differences in the context of their evolutionary relationships. As the science of structural genomics ramps up adding more and more information into the databanks, questions about the accuracy and completeness of our classification and annotation systems appear on the forefront of this research. A central question of paramount importance is how structural similarity relates to functional similarity. Here, we begin to rigorously and quantitatively answer these questions by first exploring the consensus between the most common protein domain structure annotation databases CATH, SCOP and FSSP. Each of these databases explores the evolutionary relationships between protein domains using a combination of automatic and manual, structural and functional, continuous and discrete similarity measures. In order to examine the issue of consensus thoroughly, we build a generalized graph out of each of these databases and hierarchically cluster these graphs at interval thresholds. We then employ a distance measure to find regions of greatest overlap. Using this procedure we were able not only to enumerate the level of consensus between the different annotation systems, but also to define the graph-theoretical origins behind the annotation schema of class, family and superfamily by observing that the same thresholds that define the best consensus regions between FSSP, SCOP and CATH correspond to distinct, non-random phase-transitions in the structure comparison graph itself. To investigate the correspondence in divergence between structure and function further, we introduce a measure of functional entropy that calculates divergence in function space. First, we use this measure to calculate the general correlation between structural homology and functional proximity. We extend this analysis further by quantitatively calculating the average amount of functional information gained from our understanding of structural distance and the corollary inherent uncertainty that represents the theoretical limit of our ability to infer function from structural similarity. Finally we show how our measure of functional "entropy" translates into a more intuitive concept of functional annotation into similarity EC classes.  相似文献   

14.
MOTIVATION: Searching relevant publications for manual database annotation is a tedious task. In this paper, we apply a combination of Natural Language Processing (NLP) and probabilistic classification to re-rank documents returned by PubMed according to their relevance to Swiss-Prot annotation, and to identify significant terms in the documents. RESULTS: With a Probabilistic Latent Categoriser (PLC) we obtained 69% recall and 59% precision for relevant documents in a representative query. As the PLC technique provides the relative contribution of each term to the final document score, we used the Kullback-Leibler symmetric divergence to determine the most discriminating words for Swiss-Prot medical annotation. This information should allow curators to understand classification results better. It also has great value for fine-tuning the linguistic pre-processing of documents, which in turn can improve the overall classifier performance.  相似文献   

15.
微生物基因组的生物信息学研究平台的建立   总被引:1,自引:0,他引:1  
随着人类基因组计划及其它测序工作顺利进行,人们已经得到了大量的基因序列。如何阐明这些序列的功能和意义,是功能基因组学的主要任务,生物信息学和比较基因组学为加速这一进程提供了有利的工具,该研究建立了对已经完成全基因组测序和部分测序的25种细菌的基因组的生物信息学研究平台,提供了WEB形式的服务(http://202.116.74.108)。25种细菌的全基因组蛋白质序列可以在NCBI的ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/bacteria下载,该系统可以按照基因序列号,功能和种属名查询基因序列。根据美国国家信息中心(NCBI)的功能代码表对每个基因进行了自动和手工分类,并可查询分类情况,在此基因上建立了几种亲缘关系相近的种属的同源基因相互注释功能的应用。  相似文献   

16.
Small molecules play crucial role in the modulation of biological functions by interacting with specific macromolecules. Hence small molecule interactions are captured by a variety of experimental methods to estimate and propose correlations between molecular structures to their biological activities. The tremendous expanse in publicly available small molecules is also driving new efforts to better understand interactions involving small molecules particularly in area of drug docking and pharmacogenomics. We have studied and designed a functional group identification system with the associated ontology for it. The functional group identification system can detect the functional group components from given ligand structure with specific coordinate information. Functional group ontology (FGO) proposed by us is a structured classification of chemical functional group which acts as an important source of prior knowledge that may be automatically integrated to support identification, categorization and predictive data analysis tasks. We have used a new annotation method which can be used to construct the original structure from given ontological expression using exact coordinate information. Here, we also discuss about ontology-driven similarity measure of functional groups and uses of such novel ontology for pharmacophore searching and de-novo ligand designing.  相似文献   

17.
In an era of rapid genome sequencing and high-throughput technology, automatic function prediction for a novel sequence is of utter importance in bioinformatics. While automatic annotation methods based on local alignment searches can be simple and straightforward, they suffer from several drawbacks, including relatively low sensitivity and assignment of incorrect annotations that are not associated with the region of similarity. ProtoNet is a hierarchical organization of the protein sequences in the UniProt database. Although the hierarchy is constructed in an unsupervised automatic manner, it has been shown to be coherent with several biological data sources. We extend the ProtoNet system in order to assign functional annotations automatically. By leveraging on the scaffold of the hierarchical classification, the method is able to overcome some frequent annotation pitfalls.  相似文献   

18.

Background

The current progress in sequencing projects calls for rapid, reliable and accurate function assignments of gene products. A variety of methods has been designed to annotate sequences on a large scale. However, these methods can either only be applied for specific subsets, or their results are not formalised, or they do not provide precise confidence estimates for their predictions.

Results

We have developed a large-scale annotation system that tackles all of these shortcomings. In our approach, annotation was provided through Gene Ontology terms by applying multiple Support Vector Machines (SVM) for the classification of correct and false predictions. The general performance of the system was benchmarked with a large dataset. An organism-wise cross-validation was performed to define confidence estimates, resulting in an average precision of 80% for 74% of all test sequences. The validation results show that the prediction performance was organism-independent and could reproduce the annotation of other automated systems as well as high-quality manual annotations. We applied our trained classification system to Xenopus laevis sequences, yielding functional annotation for more than half of the known expressed genome. Compared to the currently available annotation, we provided more than twice the number of contigs with good quality annotation, and additionally we assigned a confidence value to each predicted GO term.

Conclusions

We present a complete automated annotation system that overcomes many of the usual problems by applying a controlled vocabulary of Gene Ontology and an established classification method on large and well-described sequence data sets. In a case study, the function for Xenopus laevis contig sequences was predicted and the results are publicly available at ftp://genome.dkfz-heidelberg.de/pub/agd/gene_association.agd_Xenopus.
  相似文献   

19.
The JCVI metagenomics analysis pipeline provides for the efficient and consistent annotation of shotgun metagenomics sequencing data for sampling communities of prokaryotic organisms. The process can be equally applied to individual sequence reads from traditional Sanger capillary electrophoresis sequences, newer technologies such as 454 pyrosequencing, or sequence assemblies derived from one or more of these data types. It includes the analysis of both coding and non-coding genes, whether full-length or, as is often the case for shotgun metagenomics, fragmentary. The system is designed to provide the best-supported conservative functional annotation based on a combination of trusted homology-based scientific evidence and computational assertions and an annotation value hierarchy established through extensive manual curation. The functional annotation attributes assigned by this system include gene name, gene symbol, GO terms, EC numbers, and JCVI functional role categories.  相似文献   

20.
With the availability of a new highly contiguous Bos taurus reference genome assembly (ARS-UCD1.2), it is the opportune time to upgrade the bovine gene set by seeking input from researchers. Furthermore, advances in graphical genome annotation tools now make it possible for researchers to leverage sequence data generated with the latest technologies to collaboratively curate genes. For many years the Bovine Genome Database (BGD) has provided tools such as the Apollo genome annotation editor to support manual bovine gene curation. The goal of this paper is to explain the reasoning behind the decisions made in the manual gene curation process while providing examples using the existing BGD tools. We will describe the sources of gene annotation evidence provided at the BGD, including RNA-seq and Iso-Seq data. We will also explain how to interpret various data visualizations when curating gene models, and will demonstrate the value of manual gene annotation. The process described here can be applied to manual gene curation for other species with similar tools. With a better understanding of manual gene annotation, researchers will be encouraged to edit gene models and contribute to the enhancement of livestock gene sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号