首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor down-regulation is the most prominent regulatory system of EGF receptor (EGFR) signal attenuation and a critical target for therapy against colon cancer, which is highly dependent on the function of the EGFR. In this study, we investigated the effect of ultraviolet-C (UV-C) on down-regulation of EGFR in human colon cancer cells (SW480, HT29, and DLD-1). UV-C caused inhibition of cell survival and proliferation, concurrently inducing the decrease in cell surface EGFR and subsequently its degradation. UV-C, as well as EGFR kinase inhibitors, decreased the expression level of cyclin D1 and the phosphorylated level of retinoblastoma, indicating that EGFR down-regulation is correlated to cell cycle arrest. Although UV-C caused a marked phosphorylation of EGFR at Ser-1046/1047, UV-C also induced activation of p38 MAPK, a stress-inducible kinase believed to negatively regulate tumorigenesis, and the inhibition of p38 MAPK canceled EGFR phosphorylation at Ser-1046/1047, as well as subsequent internalization and degradation, suggesting that p38 MAPK mediates EGFR down-regulation by UV-C. In addition, phosphorylation of p38 MAPK induced by UV-C was mediated through transforming growth factor-β-activated kinase-1. Moreover, pretreatment of the cells with UV-C suppressed EGF-induced phosphorylation of EGFR at tyrosine residues in addition to cell survival signal, Akt. Together, these results suggest that UV-C irradiation induces the removal of EGFRs from the cell surface that can protect colon cancer cells from oncogenic stimulation of EGF, resulting in cell cycle arrest. Hence, UV-C might be applied for clinical strategy against human colon cancers.  相似文献   

2.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

3.
4.
5.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapy that preferentially induces apoptosis in cancer cells. However, many neoplasms are resistant to TRAIL by mechanisms that are poorly understood. Here we demonstrate that human breast cancer cells, but not normal mammary epithelial cells, are dramatically sensitized to TRAIL-induced apoptosis and caspase activation by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists of the thiazolidinedione (TZD) class. Although TZDs do not significantly alter the expression of components of the TRAIL signaling pathway, they profoundly reduce protein levels of cyclin D3, but not other D-type cyclins, by decreasing cyclin D3 mRNA levels and by inducing its proteasomal degradation. Importantly, both TRAIL sensitization and reduction in cyclin D3 protein levels induced by TZDs are likely PPARgamma-independent because a dominant negative mutant of PPARgamma did not antagonize these effects of TZDs, nor were they affected by the expression levels of PPARgamma. TZDs also inhibit G(1) to S cell cycle progression. Furthermore, silencing cyclin D3 by RNA interference inhibits S phase entry and sensitizes breast cancer cells to TRAIL, indicating a key role for cyclin D3 repression in these events. G(1) cell cycle arrest sensitizes breast cancer cells to TRAIL at least in part by reducing levels of the anti-apoptotic protein survivin: ectopic expression of survivin partially suppresses apoptosis induced by TRAIL and TZDs. We also demonstrate for the first time that TZDs promote TRAIL-induced apoptosis of breast cancer in vivo, suggesting that this combination may be an effective therapy for cancer.  相似文献   

6.
Lee JY  Lee YM  Chang GC  Yu SL  Hsieh WY  Chen JJ  Chen HW  Yang PC 《PloS one》2011,6(8):e23756

Background

Non-small cell lung cancer (NSCLC) patients with L858R or exon 19 deletion mutations in epidermal growth factor receptor (EGFR) have good responses to the tyrosine kinase inhibitor (TKI), gefitinib. However, patients with wild-type EGFR and acquired mutation in EGFR T790M are resistant to gefitinib treatment. Here, we showed that curcumin can improve the efficiency of gefitinib in the resistant NSCLC cells both in vitro and in vivo models.

Methods/Principal Findings

After screening 598 herbal and natural compounds, we found curcumin could inhibit cell proliferation in different gefitinib-resistant NSCLC cell lines; concentration-dependently down-regulate EGFR phosphorylation through promoting EGFR degradation in NSCLC cell lines with wild-type EGFR or T790M EGFR. In addition, the anti-tumor activity of gefitinib was potentiated via curcumin through blocking EGFR activation and inducing apoptosis in gefitinib-resistant NSCLC cell lines; also the combined treatment with curcumin and gefitinib exhibited significant inhibition in the CL1-5, A549 and H1975 xenografts tumor growth in SCID mice through reducing EGFR, c-MET, cyclin D1 expression, and inducing apoptosis activation through caspases-8, 9 and PARP. Interestingly, we observed that the combined treatment group represented better survival rate and less intestinal mucosal damage compare to gefitinib-alone therapy. We showed that curcumin attenuated the gefitinib-induced cell proliferation inhibition and apoptosis through altering p38 mitogen-activated protein kinase (MAPK) activation in intestinal epithelia cell.

Conclusions/Significance

Curcumin potentiates antitumor activity of gefitinib in cell lines and xenograft mice model of NSCLC through inhibition of proliferation, EGFR phosphorylation, and induction EGFR ubiquitination and apoptosis. In addition, curcumin attenuates gefitinib-induced gastrointestinal adverse effects via altering p38 activation. These findings provide a novel treatment strategy that curcumin as an adjuvant to increase the spectrum of the usage of gefitinib and overcome the gefitinib inefficiency in NSCLC patients.  相似文献   

7.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit cell proliferation and induce apoptosis in cancer cells. Here we wished to determine whether the PPARgamma ligand induces apoptosis and cell cycle arrest of the MDA-MB-231 cell, an estrogen receptor alpha negative breast cancer cell line. The treatment of MDA-MB-231 cell with PPARgamma ligands was shown to induce inhibition of cell growth in a dose-dependent manner as determined by MTT assay. Cell cycle analysis showed a G1 arrest in MDA-MB-231 cells exposed to troglitazone. An apoptotic effect by troglitazone demonstrated that apoptotic cells elevated by 2.5-fold from the control level at 10 microM, to 3.1-fold at 50 microM and to 3.5-fold at 75 microM. Moreover, troglitazone treatment, applied in a dose-dependent manner, caused a marked decrease in pRb, cyclin D1, cyclin D2, cyclin D3, Cdk2, Cdk4 and Cdk6 expression as well as a significant increase in p21 and p27 expression. These results indicate that troglitazone causes growth inhibition, G1 arrest and apoptotic death of MDA-MB-231 cells.  相似文献   

8.
9.
10.
Silica is a potent occupational fibrogenic agent capable of inducing lung fibrosis and many other lung diseases. Our current study focused on the signalling pathways regulating cell cycle changes in HELF (human embryo lung fibroblast) after silica (α-quartz) exposure. Our results showed silica exposure could lead to cell cycle changes. The cell cycle alternations were accompanied with overexpression of cyclin D1 and CDK4 (cyclin-dependent kinase 4) in a time-dependent manner. Silica exposure also decreased E2F-4 expression in HELF. These changes were blocked by overexpression of dominant-negative mutants of ERK (extracellular signal-regulated protein kinase) or the JNK (stress-activated c-Jun NH2-terminal kinase), respectively. Moreover, pretreatment of cells with curcumin, an activation of AP-1 (activator protein-1) inhibitor, inhibited silica-induced cell cycle alteration, the decreased expression of E2F-4 and overexpression of cyclin D1 and CDK4. Furthermore, both antisense cyclin D1 and antisense CDK4 can block silica-induced cell cycle changes. These results suggest that silica exposure can induce cell cycle changes, which may be mediated through ERK, JNK/AP-1/cyclin D1-CDK4-dependent pathway.  相似文献   

11.
Peroxisome proliferators-activated receptor gamma (PPARgamma) has been shown to suppress cell proliferation and tumorigenesis, whereas the gastrointestinal regulatory peptide gastrin stimulates the growth of neoplastic cells. The present studies were directed to determine whether changes in PPARgamma expression might mediate the effects of gastrin on the proliferation of colorectal cancer (CRC). Initially, using growth assays, we determined that the human CRC cell line DLD-1 expressed both functional PPARgamma and gastrin receptors. Amidated gastrin (G-17) attenuated the growth suppressing effects of PPARgamma by decreasing PPARgamma activity and total protein expression, in part through an increase in the rate of proteasomal degradation. G-17-induced degradation of PPARgamma appeared to be mediated through phosphorylation of PPARgamma at serine 84 by a process involving the biphasic phosphorylation of ERK1/2 and activation of the epidermal growth factor receptor (EGFR). These results were confirmed through the use of EGFR antagonist AG1478 and MEK1 inhibitor PD98059. Furthermore, mutation of PPARgamma at serine 84 reduced the effects of G-17, as evident by inability of G-17 to attenuate PPARgamma promoter activity, degrade PPARgamma, or inhibit the growth suppressing effects of PPARgamma. The results of these studies demonstrate that the trophic properties of gastrin in CRC may be mediated in part by transactivation of the EGFR and phosphorylation of ERK1/2, leading to degradation of PPARgamma protein and a decrease in PPARgamma activation.  相似文献   

12.
CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p=0.0383), lymph node metastasis (p=0.0091) and Ki67 proliferation index (p=0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.  相似文献   

13.
Epidermal growth factor receptor (EGFR) is an effective molecular target of anti-cancer therapies. Curcumin inhibits cancer cell growth in vitro by suppressing gene expression of EGFR and reduces tumor growth in various animal models. To overcome instable and insoluble properties of curcumin as therapeutics, we designed and synthesized six novel pyrimidine-substituted curcumin analogues with or without a hydroxyl group originally present in curcumin. The cell viability tests indicated that IC50 of the analogues containing hydroxyl group were 3 to 8-fold lower than those of the analogues without hydroxyl group in two colon cancer cell lines tested. Western blot analysis indicates the analogues containing hydroxyl group inhibited expression and tyrosine phosphorylation of EGFR. Further protein analyses showed that the analogues had anti-cellular proliferation, pro-apoptosis, and cell cycle arrest properties associated with suppressed EGFR expression. These results indicate that the hydroxyl groups in curcumin and the analogues were critical for observed biological activities.  相似文献   

14.
Epidermal growth factor (EGF) is commonly thought to affect the proliferation of many cells, especially epithelial cells. Aberrant expression of the receptor for EGF, (EGFR) or members of the EGFR family is often implicated in the etiology of many cancers. Ligation of the EGFR results in the activation of many downstream signaling pathways which have profound effects on cell cycle progression and the prevention of apoptosis. In general, the EGFR is thought to be either not expressed or expressed at low levels in hematopoietic cells. We determined that the EGFR was expressed at a low level in the murine cytokine-dependent hematopoietic cell line FDC-P1 but not in an additional murine IL-3 dependent cell line FL5.12. EGF induced a mild effect on DNA synthesis and ERK activation in EGFR positive FDC-P1 cells but not EGFR negative FL5.12 cells. Addition of suboptimal concentrations of IL-3 synergized with EGF in stimulating DNA synthesis in EGFR-positive FDC-P1 cells. Likewise, the EGFR inhibitor AG1478 induced apoptosis in EGFR positive FDC-P1 cells but not EGFR negative FL5.12 cells. Both cell lines can be directly transformed to cytokine independence by activated EGFR (v-ERBB) expression in the absence of autocrine growth factors indicating that they are poised to fully utilize EGFR mediated signal transduction pathways as a means for proliferation. These results document the functional importance of endogenous EGFR signaling pathway in some hematopoietic cells.  相似文献   

15.
16.
Human papillomavirus (HPV) is an important etiological agent in the genesis of cervical cancer. HPV-positive cervical tumors and human papillomavirus-positive cell lines display increased epidermal growth factor receptor (EGFR) expression, which is associated with increased cell proliferation. ECE16-1 cells are an HPV-immortalized human ectocervical epithelial cell line that is a model of HPV-associated cervical neoplasia and displays elevated EGFR levels. In the present study, we evaluated the effects of receptor-selective retinoid ligands on EGFR-associated signal transduction. We show that retinoic acid receptor (RAR)-selective ligands reduce EGFR level and the magnitude and duration of EGFR activation in EGF-stimulated cells. These effects are reversed by cotreatment with an RAR antagonist. To identify the mechanism, we examined the effects of retinoid treatments on EGF-dependent signaling. Stimulation with EGF causes a biphasic activation of the ERK1/2 MAPK. The first peak of activation is present at 20 min, and the second is present at 36 h. This activation subsequently leads to an increase in the cyclin D1 level and increased cell proliferation. Simultaneous treatment with EGF and a RAR-selective retinoid inhibits both phases of ERK1/2 activation, completely eliminates the cyclin D1 induction, and suppresses EGF-dependent cell proliferation. This effect is specific as retinoid treatment does not alter the level or activity of other EGFR-regulated kinases, including AKT and the MAPKs p38 and JNK. Retinoid X receptor-selective ligands, in contrast, did not regulate these responses. These results suggest that RAR ligand-associated down-regulation of EGFR activity reduces cell proliferation by reducing the magnitude and duration of EGF-dependent ERK1/2 activation.  相似文献   

17.
18.
19.
Curcumin, an active constituent of turmeric, has been shown to possess inhibitory effect of cell proliferation and induction of apoptosis towards a board range of tumors. Cell inhibition activities of curcumin are behaved differently in various cell types. To investigate the mechanism basis for the cell inhibition of curcumin on breast cancer cell lines, we examine curcumin effect on NFκB, cell cycle regulatory proteins and matrix metalloproteinases (MMPs) in two breast cancer cell lines (MDA-MB-231 and BT-483). Cell proliferation was performed by water soluble tetrazolium WST-1 assay. The effect of curcumin's on the activity of matrix metalloproteinase-1, 3, 9 were analyzed by RT-PCR. Cell cycle regulatory protein including cyclin D1, CDK4 and p21 were examined by immunochemistry. The expressions of NFκB in breast cancer cells treated with curcumin were studied by immunochemistry and western blot. The results from WST-1 cell proliferation assay showed that curcumin exhibited the anti-proliferation effect on MDA-MB-231 and BT-483 cells in a time- and dose-dependent manner. In response to the treatment, while, the expression of cyclin D1 had declined in MDA-MB-231 and the expression of CDK4 in BT-483 had declined. MMP1 mRNA expression in BT-483 and MDA-MB-231 had significantly decreased in curcumin treatment group compared with control group. Our finding extrapolates the antitumor activity of curcumin in mediating the breast cancer cell proliferative rate and invasion by down-regulating the NFκB inducing genes.  相似文献   

20.
The activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to induce growth arrest and differentiation of various cancer cells. In the current study, we investigated the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the expression of PPARgamma and proliferation of A549 cells. TPA elicited a dose- and time-dependent increase in PPARgamma mRNA and protein levels. PPARgamma expression in response to TPA was attenuated by pretreatment with bisindolylmaleimide I, N-acetyl-L-cysteine (NAC) and PD98059. TPA-induced protein kinase C (PKC) activation was linked to the generation of reactive oxygen species (ROS), both of which were indispensable for PPARgamma expression in A549 cells. Pretreatment with bisindolylmaleimide I or NAC blocked TPA-induced phosphorylation of extracellular signal-regulated kinase (ERK), suggesting that ERK-mediated signaling is also involved in the induction of PPARgamma. Furthermore, the growth inhibitory effect of troglitazone was significantly potentiated by prolonged incubation with TPA and was attenuated in the presence of GW9662, a specific inhibitor of PPARgamma. These effects were associated with an induction of cell cycle arrest at G0/G1 phase, which was accompanied by the induction of p21Waf1/Cip1 expression and decreased cyclin D1 expression. Taken together, these observations indicate that TPA synergizes with PPARgamma ligand to inhibit cell growth through up-regulation of PPARgamma expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号