共查询到20条相似文献,搜索用时 15 毫秒
1.
Cui J Moradkhan R Mascarenhas V Momen A Sinoway LI 《American journal of physiology. Heart and circulatory physiology》2008,294(6):H2693-H2700
Passive muscle stretch performed during a period of post-exercise muscle ischemia (PEMI) increases muscle sympathetic nerve activity (MSNA), and this suggests that the muscle metabolites may sensitize mechanoreceptors in healthy humans. However, the responsible substance(s) has not been studied thoroughly in humans. Human and animal studies suggest that cyclooxygenase products sensitize muscle mechanoreceptors. Thus we hypothesized that local cyclooxygenase inhibition in exercising muscles could attenuate MSNA responses to passive muscle stretch during PEMI. Blood pressure (Finapres), heart rate, and MSNA (microneurography) responses to passive muscle stretch were assessed in 13 young healthy subjects during PEMI before and after cyclooxygenase inhibition, which was accomplished by a local infusion of 6 mg ketorolac tromethamine in saline via Bier block. In the second experiment, the same amount of saline was infused via the Bier block. Ketorolac Bier block decreased prostaglandin synthesis to approximately 34% of the baseline. Before ketorolac Bier block, passive muscle stretch evoked significant increases in MSNA (P < 0.005) and mean arterial blood pressure (P < 0.02). After ketorolac Bier block, passive muscle stretch did not evoke significant responses in MSNA (P = 0.11) or mean arterial blood pressure (P = 0.83). Saline Bier block had no effect on the MSNA or blood pressure response to ischemic stretch. These observations indicate that cyclooxygenase inhibition attenuates MSNA responses seen during PEMI and suggest that cyclooxygenase products sensitize the muscle mechanoreceptors. 相似文献
2.
Stewart JM Rivera E Clarke DA Baugham IL Ocon AJ Taneja I Terilli C Medow MS 《American journal of physiology. Heart and circulatory physiology》2011,300(4):H1492-H1500
Increasing arterial blood pressure (AP) decreases ventilation, whereas decreasing AP increases ventilation in experimental animals. To determine whether a "ventilatory baroreflex" exists in humans, we studied 12 healthy subjects aged 18-26 yr. Subjects underwent baroreflex unloading and reloading using intravenous bolus sodium nitroprusside (SNP) followed by phenylephrine ("Oxford maneuver") during the following "gas conditions:" room air, hypoxia (10% oxygen)-eucapnia, and 30% oxygen-hypercapnia to 55-60 Torr. Mean AP (MAP), heart rate (HR), cardiac output (CO), total peripheral resistance (TPR), expiratory minute ventilation (V(E)), respiratory rate (RR), and tidal volume were measured. After achieving a stable baseline for gas conditions, we performed the Oxford maneuver. V(E) increased from 8.8 ± 1.3 l/min in room air to 14.6 ± 0.8 l/min during hypoxia and to 20.1 ± 2.4 l/min during hypercapnia, primarily by increasing tidal volume. V(E) doubled during SNP. CO increased from 4.9 ± .3 l/min in room air to 6.1 ± .6 l/min during hypoxia and 6.4 ± .4 l/min during hypercapnia with decreased TPR. HR increased for hypoxia and hypercapnia. Sigmoidal ventilatory baroreflex curves of V(E) versus MAP were prepared for each subject and each gas condition. Averaged curves for a given gas condition were obtained by averaging fits over all subjects. There were no significant differences in the average fitted slopes for different gas conditions, although the operating point varied with gas conditions. We conclude that rapid baroreflex unloading during the Oxford maneuver is a potent ventilatory stimulus in healthy volunteers. Tidal volume is primarily increased. Ventilatory baroreflex sensitivity is unaffected by chemoreflex activation, although the operating point is shifted with hypoxia and hypercapnia. 相似文献
3.
Cyclooxygenase inhibition augments central blood pressure and aortic wave reflection in aging humans
Barnes JN Casey DP Hines CN Nicholson WT Joyner MJ 《American journal of physiology. Heart and circulatory physiology》2012,302(12):H2629-H2634
The augmentation index and central blood pressure increase with normal aging. Recently, cyclooxygenase (COX) inhibitors, commonly used for the treatment of pain, have been associated with transient increases in the risk of cardiovascular events. We examined the effects of the COX inhibitor indomethacin (Indo) on central arterial hemodynamics and wave reflection characteristics in young and old healthy adults. High-fidelity radial arterial pressure waveforms were measured noninvasively by applanation tonometry before (control) and after Indo treatment in young (25 ± 5 yr, 7 men and 6 women) and old (64 ± 6 yr, 5 men and 6 women) subjects. Aortic systolic (control: 115 ± 3 mmHg vs. Indo: 125 ± 5 mmHg, P < 0.05) and diastolic (control: 74 ± 2 mmHg vs. Indo: 79 ± 3 mmHg, P < 0.05) pressures were elevated after Indo treatment in older subjects, whereas only diastolic pressure was elevated in young subjects (control: 71 ± 2 mmHg vs. Indo: 76 ± 1 mmHg, P < 0.05). Mean arterial pressure increased in both young and old adults after Indo treatment (P < 0.05). The aortic augmentation index and augmented pressure were elevated after Indo treatment in older subjects (control: 30 ± 5% vs. Indo 36 ± 6% and control 12 ± 1 mmHg vs. Indo: 18 ± 2 mmHg, respectively, P < 0.05), whereas pulse pressure amplification decreased (change: 8 ± 3%, P < 0.05). In addition, older subjects had a 61 ± 11% increase in wasted left ventricular energy after Indo treatment (P < 0.05). In contrast, young subjects showed no significant changes in any of the variables of interest. Taken together, these results demonstrate that COX inhibition with Indo unfavorably increases central wave reflection and augments aortic pressure in old but not young subjects. Our results suggest that aging individuals have a limited ability to compensate for the acute hemodynamic changes caused by systemic COX inhibition. 相似文献
4.
Clinical and experimental data suggest that both Captopril and angiotensin II (AII) reduce baroreflex responsiveness, and the main action of this converting enzyme inhibitor (CEI) seems clear to suppress AII synthesis. The aim of this work is to investigate this striking similarity of effects. We have verified that CEI (4 mg/kg) originates tachycardia significantly lower (P less than 0.001) than that produced in response to a similar hypotension elicited by an unspecific vasodilator: sodium nitroprusside (10-45 micrograms/kg min). CEI SQ 20881 has been reported to increase plasma vasopressin concentrations (AVP); this peptide is also known to modify baroreflex responses and has a small direct negative chronotropic effect. However, our determinations of AVP do not show any difference between the control group and the group treated with Captopril (4.78 +/- 0.87 and 5.26 +/- 0.19 pg/ml respectively). On the other hand, although CEI did not modify the rapid responses of heart rate (HR) to changes of mean arterial pressure (MAP), the decrease of MAP induced by nitroprusside was higher in the group treated with Captopril than in control group; it could mean a baroreflex ability decrease to buffer the hypotension. However, AII elicited a strong impairment of both rapid responses of HR and the buffering of hypotension produced by NP, these actions being suggested as centrally mediated. These results could indicate that the suppression of peripheral AII synthesis and therefore, the lack of pre- and postjunctional sympathetic potentiation owing to this hormone, is responsible for the absence of tachycardia under Captopril treatment. 相似文献
5.
Akimoto T Sugawara J Ichikawa D Terada N Fadel PJ Ogoh S 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,301(5):R1591-R1598
The neural interaction between the cardiopulmonary and arterial baroreflex may be critical for the regulation of blood pressure during orthostatic stress. However, studies have reported conflicting results: some indicate increases and others decreases in cardiac baroreflex sensitivity (i.e., gain) with cardiopulmonary unloading. Thus the effect of orthostatic stress-induced central hypovolemia on regulation of heart rate via the arterial baroreflex remains unclear. We sought to comprehensively assess baroreflex function during orthostatic stress by identifying and comparing open- and closed-loop dynamic cardiac baroreflex gains at supine rest and during 60° head-up tilt (HUT) in 10 healthy men. Closed-loop dynamic "spontaneous" cardiac baroreflex sensitivities were calculated by the sequence technique and transfer function and compared with two open-loop carotid-cardiac baroreflex measures using the neck chamber system: 1) a binary white-noise method and 2) a rapid-pulse neck pressure-neck suction technique. The gain from the sequence technique was decreased from -1.19 ± 0.14 beats·min(-1)·mmHg(-1) at rest to -0.78 ± 0.10 beats·min(-1)·mmHg(-1) during HUT (P = 0.005). Similarly, closed-loop low-frequency baroreflex transfer function gain was reduced during HUT (P = 0.033). In contrast, open-loop low-frequency transfer function gain between estimated carotid sinus pressure and heart rate during white-noise stimulation was augmented during HUT (P = 0.01). This result was consistent with the maximal gain of the carotid-cardiac baroreflex stimulus-response curve (from 0.47 ± 0.15 beats·min(-1)·mmHg(-1) at rest to 0.60 ± 0.20 beats·min(-1)·mmHg(-1) at HUT, P = 0.037). These findings suggest that open-loop cardiac baroreflex gain was enhanced during HUT. Moreover, under closed-loop conditions, spontaneous baroreflex analyses without external stimulation may not represent open-loop cardiac baroreflex characteristics during orthostatic stress. 相似文献
6.
Durocher JJ Klein JC Carter JR 《American journal of physiology. Heart and circulatory physiology》2011,300(5):H1788-H1793
Mental stress consistently induces a pressor response that is often accompanied by a paradoxical increase of muscle sympathetic nerve activity (MSNA). The purpose of the present study was to evaluate sympathetic baroreflex sensitivity (BRS) by examining the relations between spontaneous fluctuations of diastolic arterial pressure (DAP) and MSNA. We hypothesized that sympathetic BRS would be attenuated during mental stress. DAP and MSNA were recorded during 5 min of supine baseline, 5 min of mental stress, and 5 min of recovery in 32 young healthy adults. Burst incidence and area were determined for each cardiac cycle and placed into 3-mmHg DAP bins; the slopes between DAP and MSNA provided an index of sympathetic BRS. Correlations between DAP and MSNA were strong (> 0.5) during baseline in 31 of 32 subjects, but we evaluated the change in slope only for those subjects maintaining a strong correlation during mental stress (16 subjects). During baseline, the relation between DAP and MSNA was negative when expressed as either burst incidence [slope = -1.95 ± 0.18 bursts·(100 beats)?1)·mmHg?1; r = -0.86 ± 0.03] or total MSNA [slope = -438 ± 91 units·(beat)?1 mmHg?1; r = -0.76 ± 0.06]. During mental stress, the slope between burst incidence and DAP was significantly reduced [slope = -1.14 ± 0.12 bursts·(100 beats)?1·mmHg?1; r = -0.72 ± 0.03; P < 0.01], indicating attenuation of sympathetic BRS. A more detailed analysis revealed an attenuation of sympathetic BRS during the first 2 min of mental stress (P < 0.01) but no change during the final 3 min of mental stress (P = 0.25). The present study demonstrates that acute mental stress attenuates sympathetic BRS, which may partially contribute to sympathoexcitation during the mental stress-pressor response. However, this attenuation appears to be isolated to the onset of mental stress. Moreover, variable MSNA responses to mental stress do not appear to be directly related to sympathetic BRS. 相似文献
7.
Crandall CG 《American journal of physiology. Heart and circulatory physiology》2000,279(4):H1955-H1962
The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress. 相似文献
8.
Middlekauff HR Chiu J 《American journal of physiology. Heart and circulatory physiology》2004,287(5):H1944-H1949
Evidence in healthy animals and humans is accumulating that the muscle mechanoreceptors play an important role in mediating sympathetic activation during exercise, especially rhythmic exercise. Furthermore, muscle mechanoreceptors appear to be sensitized acutely during exercise by metabolic by-products, although the identity of these by-products remains unknown. The purpose of this study was to determine whether the metabolic by-products 1) prostaglandins and/or 2) adenosine sensitize muscle mechanoreceptor control of muscle sympathetic nerve activity (MSNA) in normal humans during rhythmic exercise. MSNA was recorded using microneurography. Muscle mechanoreceptors were activated by low-level rhythmic forearm exercise for 3 min. In 16 healthy humans, intra-arterial indomethacin was infused into the exercising arm to inhibit synthesis of cyclooxygenase products. In 18 healthy humans, intra-arterial aminophylline was infused into the exercising arm to block adenosine receptors. During saline control, MSNA increased significantly during exercise. Inhibition of cyclooxygenase during exercise dramatically and virtually completely eliminated the reflex sympathetic activation. Inhibition of adenosine receptors with aminophylline had no effect on the sympathetic activation during muscle mechanoreceptor stimulation. In conclusion, muscle mechanoreceptors are sensitized by cyclooxygenase products, but not by adenosine, during 3 min of low-level rhythmic handgrip exercise in healthy humans. Further studies of other metabolic by-products and of patients with enhanced muscle mechanoreceptor sensitivity, such as patients with heart failure, are warranted. 相似文献
9.
The arterial baroreflex is an important determinant of the neural regulation of the cardiovascular system. It has been recognised that baroreflex-mediated sympathoexcitation contributes to the development and progression of many cardiovascular disorders. Accordingly, the quantitative estimation of the arterial baroreceptor-heart rate reflex (baroreflex sensitivity, BRS), has been regarded as a synthetic index of neural regulation at the sinus atrial node. The evaluation of BRS has been shown to provide clinical and prognostic information in a variety of cardiovascular diseases, including myocardial infarction and heart failure that are reviewed in the present article. 相似文献
10.
Karl-Jürgen B?r Michael Karl Boettger Sandy Berger Vico Baier Heinrich Sauer Vikram K Yeragani Andreas Voss 《Journal of applied physiology》2007,102(3):1051-1056
Decreased vagal activity has been described in acute schizophrenia and might be associated with altered cardiovascular regulation and increased cardiac mortality. The aim of this study was to assess baroreflex sensitivity in the context of psychopathology. Twenty-one acute, psychotic, unmedicated patients with a diagnosis of paranoid schizophrenia were investigated after admission to the hospital. Results were compared with 21 healthy volunteers matched with respect to age and sex. Cardiovascular parameters obtained included measures for heart rate variability, baroreflex sensitivity, as well as cardiac output, left ventricular work index, and total peripheral resistance. All parameters investigated were analyzed using linear and novel nonlinear techniques. Positive and negative symptoms were assessed to estimate the impact of psychopathology on autonomic parameters. Subjects with acute schizophrenia showed reduction of baroreflex sensitivity accompanied by tachycardia and greatly increased left ventricular work index. Nonlinear parameters of baroreflex sensitivity correlated with positive symptoms. For heart rate variability, mainly parameters indicating parasympathetic modulation were decreased. Vascular pathology could be excluded as a confounding factor. These results reflect a dysfunctional cardiovascular regulation in acute schizophrenic patients at rest. The changes are similar to adaptational regulatory processes following stressful mental or physical tasks in healthy subjects. This study suggests that hyperarousal in acute schizophrenia is accompanied by decreased efferent vagal activity, thus increasing the risk for cardiovascular mortality. Future studies are warranted to examine the role of the sympathetic system and possible autonomic differences in hyperarousal induced by anxiety and/or external stressful events. 相似文献
11.
Monahan KD Leuenberger UA Ray CA 《American journal of physiology. Heart and circulatory physiology》2007,292(1):H190-H197
Animal studies suggest that acute and chronic aldosterone administration impairs baroreceptor/baroreflex responses. We tested the hypothesis that aldosterone impairs baroreflex control of cardiac period [cardiovagal baroreflex sensitivity (BRS)] and muscle sympathetic nerve activity (MSNA, sympathetic BRS) in humans. Twenty-six young (25 +/- 1 yr old, mean +/- SE) adults were examined in this study. BRS was determined by using the modified Oxford technique (bolus infusion of nitroprusside, followed 60 s later by bolus infusion of phenylephrine) in triplicate before (Pre) and 30-min after (Post) beginning aldosterone (experimental, 12 pmol.kg(-1).min(-1); n = 10 subjects) or saline infusion (control; n = 10). BRS was quantified from the R-R interval-systolic blood pressure (BP) (cardiovagal BRS) and MSNA-diastolic BP (sympathetic BRS) relations. Aldosterone infusion increased serum aldosterone levels approximately fourfold (P < 0.05) and decreased (P < 0.05) cardiovagal (19.0 +/- 2.3 vs. 15.6 +/- 1.7 ms/mmHg Pre and Post, respectively) and sympathetic BRS [-4.4 +/- 0.4 vs. -3.0 +/- 0.4 arbitrary units (AU).beat(-1).mmHg(-1)]. In contrast, neither cardiovagal (19.3 +/- 3.3 vs. 20.2 +/- 3.3 ms/mmHg) nor sympathetic BRS (-3.8 +/- 0.5 vs. -3.6 +/- 0.5 AU.beat(-1).mmHg(-1)) were altered (Pre vs. Post) in the control group. BP, heart rate, and MSNA at rest were similar in experimental and control subjects before and after the intervention. Additionally, neural and cardiovascular responses to a cold pressor test and isometric handgrip to fatigue were unaffected by aldosterone infusion (n = 6 subjects). These data provide direct experimental support for the concept that aldosterone impairs baroreflex function (cardiovagal and sympathetic BRS) in humans. Therefore, aldosterone may be an important determinant/modulator of baroreflex function in humans. 相似文献
12.
Adverse effects and gastrointestinal toxicity limit the use of Diclofenac, a frequently-used NSAID for treatments of rheumatic disorders and other chronic inflammatory diseases. Diclofenac-carrier formulations may alleviate adverse effects, increase efficacy and allow local administration. We report here our first step, biophysical and biochemical investigations of Diclofenac formulated in our previously-developed bioadhesive liposomes carrying hyaluronan (HA-BAL) or collagen (COL-BAL) on their surface. Both liposome types encapsulated Diclofenac at high efficiency, encapsulated doses reaching 13 mg drug/ml, and performed as sustained-release Diclofenac depots, half-lives of drug release (under fastest conditions) ranging from 1 to 3 days. Therapeutic activity of liposomal Diclofenac was evaluated in CT-26 cells that possess the CD44 hyaluronan receptors and integrins, and are a bench-mark for intracellular COX enzymes. HA-BAL and COL-BAL showed high cellular-affinity that was 40 fold and 6 fold over that of regular liposomes. Free, and liposome-encapsulated, Diclofenac showed similar activities. For example: 2-3nM Diclofenac given to intact cells generated COX-inhibition levels in the range of 60-70% for free drug and for encapsulated drug in COL-BAL and in HA-BAL. We propose these novel Diclofenac formulations possess key physicochemical and biochemical attributes for task performance, meriting the next step into in vivo studies. 相似文献
13.
Inbar Elron-Gross 《生物化学与生物物理学报:生物膜》2008,1778(4):931-936
Adverse effects and gastrointestinal toxicity limit the use of Diclofenac, a frequently-used NSAID for treatments of rheumatic disorders and other chronic inflammatory diseases. Diclofenac-carrier formulations may alleviate adverse effects, increase efficacy and allow local administration. We report here our first step, biophysical and biochemical investigations of Diclofenac formulated in our previously-developed bioadhesive liposomes carrying hyaluronan (HA-BAL) or collagen (COL-BAL) on their surface. Both liposome types encapsulated Diclofenac at high efficiency, encapsulated doses reaching 13mg drug/ml, and performed as sustained-release Diclofenac depots, half-lives of drug release (under fastest conditions) ranging from 1 to 3days. Therapeutic activity of liposomal Diclofenac was evaluated in CT-26 cells that possess the CD44 hyaluronan receptors and integrins, and are a bench-mark for intracellular COX enzymes. HA-BAL and COL-BAL showed high cellular-affinity that was 40 fold and 6 fold over that of regular liposomes. Free, and liposome-encapsulated, Diclofenac showed similar activities. For example: 2-3nM Diclofenac given to intact cells generated COX-inhibition levels in the range of 60-70% for free drug and for encapsulated drug in COL-BAL and in HA-BAL. We propose these novel Diclofenac formulations possess key physicochemical and biochemical attributes for task performance, meriting the next step into in vivo studies. 相似文献
14.
Cottin F Médigue C Papelier Y 《American journal of physiology. Heart and circulatory physiology》2008,295(3):H1150-H1155
The aim of the study was to assess the instantaneous spectral components of heart rate variability (HRV) and systolic blood pressure variability (SBPV) and determine the low-frequency (LF) and high-frequency baroreflex sensitivity (HF-BRS) during a graded maximal exercise test. The first hypothesis was that the hyperpnea elicited by heavy exercise could entail a significant increase in HF-SBPV by mechanical effect once the first and second ventilatory thresholds (VTs) were exceeded. It was secondly hypothesized that vagal tone progressively withdrawing with increasing load, HF-BRS could decrease during the exercise test. Fifteen well-trained subjects participated in this study. Electrocardiogram (ECG), blood pressure, and gas exchanges were recorded during a cycloergometer test. Ventilatory equivalents were computed from gas exchange parameters to assess VTs. Spectral analysis was applied on cardiovascular series to compute RR and systolic blood pressure power spectral densities, cross-spectral coherence, gain, and alpha index of BRS. Three exercise intensity stages were compared: below (A1), between (A2), and above (A3) VTs. From A1 to A3, both HF-SBPV (A1: 45 +/- 6, A2: 65 +/- 10, and A3: 120 +/- 23 mm2Hg, P < 0.001) and HF-HRV increased (A1: 20 +/- 5, A2: 23 +/- 8, and A3:40 +/- 11 ms2, P < 0.02), maintaining HF-BRS (gain, A1: 0.68 +/- 0.12, A2: 0.63 +/- 0.08, and A3: 0.57 +/- 0.09; alpha index, A1: 0.58 +/- 0.08, A2: 0.48 +/- 0.06, and A3: 0.50 +/- 0.09 ms/mmHg, not significant). However, LF-BRS decreased (gain, A1: 0.39 +/- 0.06, A2: 0.17 +/- 0.02, and A3: 0.11 +/- 0.01, P < 0.001; alpha index, A1: 0.46 +/- 0.07, A2: 0.20 +/- 0.02, and A3: 0.14 +/- 0.01 ms/mmHg, P < 0.001). As expected, once VTs were exceeded, hyperpnea induced a marked increase in both HF-HRV and HF-SBPV. However, this concomitant increase allowed the maintenance of HF-BRS, presumably by a mechanoelectric feedback mechanism. 相似文献
15.
R Fiocchi R Fagard L Vanhees R Grauwels A Amery 《European journal of applied physiology and occupational physiology》1985,54(5):461-465
Carotid baroreceptors were stimulated with neck suction in 47 healthy subjects. Pulse interval lengthening was measured and the time course of the response was evaluated. Eight intensities of neck chamber suction were applied to select a criterion for computing the "RR response" that gives a significant linear relationship with the magnitude of the stimuli in the highest number of individuals. The best criterion was the maximal RR prolongation within 5 seconds after the onset of the stimulus. The slope of this relationship was defined as baroreflex sensitivity. The effect of physical fitness on baroreceptor function was investigated in 24 cycling tourists with a wide range of peak oxygen uptake and training characteristics. Baroreflex sensitivity averaged 7.3 +/- 0.8 msec X mm Hg-1 and was not significantly related to age, weight, basal heart rate, peak oxygen uptake and ventilation and other training characteristics. The results suggest that in man the so defined sensitivity of the carotid baroreflex control of heart rate is not influenced by the level of physical fitness and therefore the measurement of these characteristics can be neglected in evaluating baroreflex sensitivity. 相似文献
16.
Middlekauff HR Chiu J Hamilton MA Fonarow GC Maclellan WR Hage A Moriguchi J Patel J 《American journal of physiology. Heart and circulatory physiology》2008,294(4):H1956-H1962
Prior work in animals and humans suggests that muscle mechanoreceptor control of sympathetic activation [muscle sympathetic nerve activity (MSNA)] during exercise in heart failure (HF) patients is heightened compared with that of healthy humans and that muscle mechanoreceptors are sensitized by metabolic by-products. We sought to determine whether cyclooxygenase products and/or endogenous adenosine, two metabolites of ischemic exercise, sensitize muscle mechanoreceptors during rhythmic handgrip (RHG) exercise in HF patients. Indomethacin, which inhibits the production of prostaglandins, and saline control were infused in 12 HF patients. In a different protocol, aminophylline, which inhibits adenosine receptors, and saline control were infused in 12 different HF patients. MSNA was recorded (microneurography). During exercise following saline, MSNA increased in the first minute of exercise, consistent with baseline heightened mechanoreceptor sensitivity. MSNA continued to increase during 3 min of RHG, indicative that muscle mechanoreceptors are sensitized by ischemia metabolites. Indomethacin, but not aminophylline, markedly attenuated the increase in MSNA during the entire 3 min of low-level rhythmic exercise, consistent with the sensitization of muscle mechanoreceptors by cyclooxygenase products. Interestingly, even the early increase in MSNA was abolished by indomethacin infusion, indicative of the very early generation of cyclooxygenase products after the onset of exercise in HF patients. In conclusion, muscle mechanoreceptors mediate the increase in MSNA during low-level RHG exercise in HF. Cyclooxygenase products, but not endogenous adenosine, play a central role in muscle mechanoreceptor sensitization. Finally, muscle mechanoreceptors in patients with HF have heightened basal sensitivity to mechanical stimuli, which also appears to be mediated by the early generation of cyclooxygenase products, resulting in exaggerated early increases in MSNA. 相似文献
17.
Muenter Swift N Cutler MJ Fadel PJ Wasmund WL Ogoh S Keller DM Raven PB Smith ML 《American journal of physiology. Heart and circulatory physiology》2003,285(6):H2411-H2419
Muscle sympathetic nerve activity (MSNA) and arterial pressure increase concomitantly during apnea, suggesting a possible overriding of arterial baroreflex inhibitory input to sympathoregulatory centers by apnea-induced excitatory mechanisms. Apnea termination is accompanied by strong sympathoinhibition while arterial pressure remains elevated. Therefore, we hypothesized that the sensitivity of carotid baroreflex control of MSNA would decrease during apnea and return upon apnea termination. MSNA and heart rate responses to -60-Torr neck suction (NS) were evaluated during baseline and throughout apnea. Responses to +30-Torr neck pressure (NP) were evaluated during baseline and throughout 1 min postapnea. Apnea did not affect the sympathoinhibitory or bradycardic response to NS (P > 0.05); however, whereas the cardiac response to NP was maintained postapnea, the sympathoexcitatory response was reduced for 50 s (P < 0.05). These data demonstrate that the sensitivity of carotid baroreflex control of MSNA is not attenuated during apnea. We propose a transient rightward and upward resetting of the carotid baroreflex-MSNA function curve during apnea and that return of the function curve to, or more likely beyond, baseline (i.e., a downward and leftward shift) upon apnea termination may importantly contribute to the reduced sympathoexcitatory response to NP. 相似文献
18.
Masuki S Takeoka M Taniguchi S Nose H 《American journal of physiology. Heart and circulatory physiology》2003,284(3):H939-H946
Calponin is an actin binding protein in vascular smooth muscle that modifies contractile responses. However, its role in mean arterial pressure (MAP) regulation has not been clarified. To assess this, MAP and heart rate (HR) were measured in calponin knockout (KO) mice, and the results were compared with those in wild-type (WT) mice. The measurements were performed every 100 ms during a 60-min free-moving state each day for 3 days. Mice in both groups rested during approximately 70% of the total measuring period. The mean HR during rest was significantly lower in KO mice than in WT mice but with no significant difference in MAP between the groups. The change in HR response (deltaHR) to spontaneous change in MAP (deltaMAP) varied in a wider range in KO mice with an 80% increase in the coefficient of variation for HR (P < 0.05), whereas MAP in KO mice was controlled in a narrow range similar to that in WT mice. The baroreflex sensitivity (deltaHR/deltaMAP), determined from the change in HR to the spontaneous change in MAP, was twofold higher in KO mice than that in WT mice (P < 0.01), whereas there were no significant differences in the baroreflex sensitivity determined by intravascular administration of phenylephrine and sodium nitroprusside between the two groups (P > 0.1). The MAP response to the administrated doses of phenylephrine in KO mice was reduced to one-half of that in WT mice (P < 0.01) but with no significant difference in the response to sodium nitroprusside between the groups. The differences in HR variability and the spontaneous baroreflex sensitivity between the two groups completely disappeared after carotid sinus denervation. These results suggest that the higher variability in HR for KO mice was caused by the increased spontaneous arterial baroreflex sensitivity, though not detected by the intra-arterial administration of the drug, and that the higher variability of HR may be a compensatory adaptation to the blunted alpha-adrenergic response of peripheral vessels to sympathetic nervous activity. 相似文献
19.
Medow MS Taneja I Stewart JM 《American journal of physiology. Heart and circulatory physiology》2007,293(1):H425-H432
We tested the hypothesis that cyclooxygenases (COXs) or COX products inhibit nitric oxide (NO) synthesis and thereby mask potential effects of NO on reactive hyperemia in the cutaneous circulation. We performed laser-Doppler flowmetry (LDF) with intradermal microdialysis in 12 healthy volunteers aged 19-25 yr. LDF was expressed as the percent cutaneous vascular conduction (%CVC) or as the maximum %CVC (%CVC(max)) where CVC is LDF/mean arterial pressure. We tested the effects of the nonisoform-specific NO synthase inhibitor nitro-L-arginine (NLA, 10 mM), the nonspecific COX inhibitor ketorolac (Keto, 10 mM), combined NLA + Keto, and NLA + sodium nitroprusside (SNP, 28 mM) on baseline and reactive hyperemia flow parameters. We also examined the effects of isoproterenol, a beta-adrenergic agonist that causes prostaglandin-independent vasodilation to correct for the increase in baseline flow caused by Keto. When delivered directly into the intradermal space, Keto greatly augments all aspects of the laser-Doppler flow response to reactive hyperemia: peak reactive hyperemic flow increased from 41 +/- 5 to 77 +/- 7%CVC(max), time to peak flow increased from 17 +/- 3 to 56 +/- 24 s, the area under the reactive hyperemic curve increased from 1,417 +/- 326 to 3,376 +/- 876%CVC(max).s, and the time constant for the decay of peak flow increased from 100 +/- 23 to 821 +/- 311 s. NLA greatly attenuates the Keto response despite exerting no effects on baseline LDF or on reactive hyperemia when given alone. Low-dose NLA + SNP duplicates the Keto response. Isoproterenol increased baseline and peak reactive flow. These results suggest that COX inhibition unmasks NO dependence of reactive hyperemia in human cutaneous circulation. 相似文献
20.
Cividjian A Toader E Wesseling KH Karemaker JM McAllen R Quintin L 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,300(4):R949-R957
The delay τ between rising systolic blood pressure (SBP) and baroreflex bradycardia has been found to increase when vagal tone is low. The α(2)-agonist clonidine increases cardiac vagal tone, and this study tested how it affects τ. In eight conscious supine human volunteers clonidine (6 μg/kg po) reduced τ, assessed both by cross correlation baroreflex sensitivity and sequence methods (both P < 0.05). Experiments on urethane-anaesthetized rats reproduced the phenomenon and investigated the underlying mechanism. Heart rate (HR) responses to increasing SBP produced with an arterial balloon catheter showed reduced τ (P < 0.05) after clonidine (100 μg/kg iv). The central latency of the reflex was unaltered, however, as shown by the unchanged timing with which antidromically identified cardiac vagal motoneurons (CVM) responded to the arterial pulse. Testing the latency of the HR response to brief electrical stimuli to the right vagus showed that this was also unchanged by clonidine. Nevertheless, vagal stimuli delivered at a fixed time in the cardiac cycle (triggered from the ECG R-wave) slowed HR with a 1-beat delay in the baseline state but a 0-beat delay after clonidine (n = 5, P < 0.05). This was because clonidine lengthened the diastolic period, allowing the vagal volleys to arrive at the heart just in time to postpone the next beat. Calculations indicate that naturally generated CVM volleys in both humans and rats arrive around this critical time. Clonidine thus reduces τ not by changing central or efferent latencies but simply by slowing the heart. 相似文献