首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To further elucidate the functional anatomy of canine cardiac innervation as well as to assess the feasibility of producing regional left ventricular sympathetic denervation, the chronotropic and (or) regional left ventricular inotropic responses produced by stellate or middle cervical ganglion stimulation were investigated in 22 dogs before and after sectioning of individual major cardiopulmonary or cardiac nerves. Sectioning the right or left subclavian ansae abolished all cardiac responses produced by ipsilateral stellate ganglion stimulation. Sectioning a major sympathetic cardiopulmonary nerve, other than the right interganglionic nerve, usually reduced, but seldom abolished, regional inotropic responses elicited by ipsilateral middle cervical ganglion stimulation. Sectioning the dorsal mediastinal cardiac nerves consistently abolished the left ventricular inotropic responses elicited by right middle cervical ganglion stimulation but minimally affected those elicited by left middle cervical ganglion stimulation. In contrast, cutting the left lateral cardiac nerve decreased the inotropic responses in lateral and posterior left ventricular segments elicited by left middle cervical ganglion stimulation but had little effect on the inotropic responses produced by right middle cervical ganglion stimulation. In addition, the ventral mediastinal cardiac nerve was found to be a significant sympathetic efferent pathway from the left-sided ganglia to the left ventricle. These results indicate that the stellate ganglia project axons to the heart via the subclavian ansae and thus effective sympathetic decentralization can be produced by cutting the subclavian ansae; the right-sided cardiac sympathetic efferent innervation of the left ventricle converges intrapericardially in the dorsal mediastinal cardiac nerves; and the left-sided cardiac sympathetic efferent innervation of the left ventricle diverges to innervate the left ventricle by a number of nerves including the dorsal mediastinal, ventral mediastinal, and left lateral cardiac nerves. Thus consistent denervation of a region of the left ventricle can not be accomplished by sectioning an individual cardiopulmonary or cardiac nerve because of the functional and anatomical variability of the neural components in each nerve, as well as the fact that overlapping regions of the left ventricle are innervated by these different nerves.  相似文献   

2.
The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR) and CGRP- immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58±2% for superior cervical ganglion and 58±8% for stellate ganglion) and chronic (60±2% for superior cervical ganglion and 59±15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.Key words: trigeminal ganglion, otic ganglion, superior cervical ganglion, arthritis, temporomandibular joint.  相似文献   

3.
Location and numbers of neurons associated with sympathetic innervation of the heart within the right stellate and accessory cervical ganglia, the spinal cord, and spinal ganglia were investigated using horseradish peroxidase retrograde axonal transport techniques in cats. The enzyme was applied to central sections of the anastomosis of the stellate ganglion with the vagus nerve, the inferior cardiac nerve, and the vagosympathetic trunk caudal to the anastomosis. Labeled neurons within the stellate ganglion were located close to the point of departure of the nerves and more thinly distributed in the accessory cervical ganglion. A group of labeled cells was found in the anastomosis itself. Preganglionic neurons associated with sympathetic innervation of the heat were detected at segmental levels T1–T5 in the spinal cord. Labeled neurons were diffusely located in the spinal ganglia, concentrated mainly at levels T2–T4.Medical Institute, Ministry of Public Health of the RSFSR, Yaroslavl'. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 106–111, January–February, 1989.  相似文献   

4.
The origins of the afferent fibers to the cat's superior cervical ganglion (SCG) were demonstrated by using the retrograde horseradish peroxidase tracing method. We found that the preganglionic neurons were located in the spinal segments C8-T5, particularly in T1-T3. These neurons were situated mainly in the intermediolateral column. The extra-SCG neurons along with the cervical sympathetic trunk originated ipsilaterally from the middle cervical and stellate ganglia, and contralaterally from the caudal part of the SCG. Labeled neurons also originated from the mandibular division of the trigeminal ganglion. Our results demonstrated that many fiber sources projected to the SCG, which plays a complicated synaptic role in controlling the visceral organs of the head and neck region.  相似文献   

5.
本研究应用乙醛酸诱发儿茶酚胺(CA)荧光技术观察大鼠肾上腺素(NA)能神经在脊神经节内的分布;并应用HRP顺、逆行追踪技术对脊神经节内NA能神经纤维的起源及其与脊神经节神经元的关系进行了探讨。荧光组织化学观察发现、有些神经节神经元胞体周围分布有带膨体的NA能神经末梢;有的紧密围绕脊神经节细胞——卫星细胞复合体。颈上交感神经节内注射霍乱毒素B亚单位结合HRP(CB┐HRP),在同侧C3~6节段脊神经节内可见标记的点状纤维末梢紧邻于节细胞旁。T11~L2节段脊神经节内注射HRP后,在同侧椎旁交感链(T9~L1)内可见标记的交感节后神经元胞体。上述实验结果表明,交感节后神经元发出节后纤维可直接到达脊神经节内,与节细胞发生接触。本研究提示、交感神经在脊神经节水平可能参与躯体初级传入信息的调制  相似文献   

6.
Summary The localization of the proenkephalin A-derived octapeptide, Met5-enkephalin-Arg6-Gly7-Leu8 (MEAGL), was studied in the major salivary glands of Sprague-Dawley and Wistar rats with the indirect immunofluorescence method. MEAGL-immunoreactive nerve fibers were found around the acini, along intra-and interlobular salivary ducts and in close contact with blood vessels. In the parotid and submandibular glands tyrosine hydroxylase (TH) immunoreactivity was observed in nerve fibers around the acini, in association with intra- and interlobular salivary ducts and around blood vessels, while in the sublingual gland TH-immunoreactive nerve fibers were only seen around blood vessels. Parasympathetic neurons in submandibular ganglia contained MEAGL immunoreactivity. Moderate TH immunoreactivity was seen in some neurons of the submandibular ganglia. A subpopulation of sympathetic principal neurons in the superior cervical ganglion were immunoreactive for both MEAGL and TH. In the trigeminal ganglion, no MEAGL-immunoreactive sensory neurons or nerve fibers were observed. Superior cervical ganglionectomies resulted in a complete disappearance of TH-immunoreactive nerve fibers, while MEAGL-immunoreative nerve fibers were still present in the glands. The presence of MEAGL immunoreactivity in neurons of both sympathetic superior cervical ganglia and parasympathetic submandibular ganglia and the results of superior cervical ganglionectomies suggest, that MEAGL-immunoreactive nerve fibers in the major salivary glands of the rat have both sympathetic and parasympathetic origin.  相似文献   

7.
The locations, projections, and functions of the intracardiac ganglia are incompletely understood. Immunocytochemical labeling with the general neuronal marker protein gene product 9.5 (PGP 9.5) was used to determine the distribution of intracardiac neurons throughout the cat atria and ventricles. Fluorescence microscopy was used to determine the number of neurons within these ganglia. There are eight regions of the cat heart that contain intracardiac ganglia. The numbers of neurons found within these intracardiac ganglia vary dramatically. The total number of neurons found in the heart (6,274 +/- 1,061) is almost evenly divided between the atria and the ventricles. The largest ganglion is found in the interventricular septum (IVS). Retrogradely labeled fluorescent tracer studies indicated that the vagal intracardiac innervation of the anterior surface of the right ventricle originates predominantly in the IVS ganglion. A cranioventricular (CV) ganglion was retrogradely labeled from the anterior surface of the left ventricle but not from the anterior surface of the right ventricle. These new neuroanatomic data support the prior physiological hypothesis that the CV ganglion in the cat exerts a negative inotropic effect on the left ventricle. A total of three separate intracardiac ganglia innervate the left ventricle, i.e., the CV, IVS, and a second left ventricular (LV2) ganglion. However, the IVS ganglion provides the major source of innervation to both the left and right ventricles. This dual innervation pattern may help to coordinate or segregate vagal effects on left and right ventricular performance.  相似文献   

8.
Summary In rats, the distribution of nerve structures staining for NADPH-diaphorase, and showing immunoreactivities for nitric oxide synthase (NOS), tyrosine hydroxylase and various neuropeptides was studied in sensory ganglia (dorsal root, nodose and trigeminal ganglia), in sympathetic ganglia (superior cervical, stellate, coeliac-superior and inferior mesenteric ganglia), parasympathetic ganglia (sphenopalatine, submandibular, sublingual and otic ganglia), and in the mixed parasympathetic/ sympathetic ganglia (major pelvic ganglia). The coincidence of neuronal cell bodies with strong NOS-immunoreactivity and strong NADPH diaphorase reactivity was almost total. The relative proportions of NOS-immunoreactive nerve cell bodies were largest in parasympathetic ganglia and major pelvic ganglia followed by sensory ganglia. In sympathetic ganglia no NOS-immunoreactive neuronal cell bodies could be detected. In parasympathetic and major pelvic ganglia, there was a very significant neuronal co-localization of immunoreactivities for NOS and vasoactive intestinal polypeptide (VIP). This was almost total in major pelvic ganglia, in which NOS-/VIP-immunoreactive nerve cell bodies were separate from sympathetic (tyrosine hydroxylase-/neuropeptide Y-immunoreactive), suggesting that NOS-/VIP-immuno-reactive neurons might also be parasympathetic.  相似文献   

9.
Intracardiac pathways mediating the parasympathetic control of various cardiac functions are incompletely understood. Several intracardiac ganglia have been demonstrated to potently influence cardiac rate [the sinoatrial (SA) ganglion], atrioventricular (AV) conduction (the AV ganglion), or left ventricular contractility (the cranioventricular ganglion). However, there are numerous ganglia found throughout the heart whose functions are poorly characterized. One such ganglion, the posterior atrial (PA) ganglion, is found in a fat pad on the rostral dorsal surface of the right atrium. We have investigated the potential impact of this ganglion on cardiac rate and AV conduction. We report that microinjections of a ganglionic blocker into the PA ganglion significantly attenuates the negative chronotropic effects of vagal stimulation without significantly influencing negative dromotropic effects. Because prior evidence indicates that the PA ganglion does not project to the SA node, we neuroanatomically tested the hypothesis that the PA ganglion mediates its effect on cardiac rate through an interganglionic projection to the SA ganglion. Subsequent to microinjections of the retrograde tracer fast blue into the SA ganglion, >70% of the retrogradely labeled neurons found within five intracardiac ganglia throughout the heart were observed in the PA ganglion. The neuroanatomic data further indicate that intraganglionic neuronal circuits are found within the SA ganglion. The present data support the hypothesis that two interacting cardiac centers, i.e., the SA and PA ganglia, mediate the peripheral parasympathetic control of cardiac rate. These data further support the emerging concept of an intrinsic cardiac nervous system.  相似文献   

10.
Summary Paravertebral (superior cervical and stellate), prevertebral (coeliac-superior mesenteric, inferior mesenteric) and pelvic (hypogastric) sympathetic ganglia of the rat were investigated by enzyme histochemistry to ascertain the distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) activity. In the paravertebral ganglia the majority of the sympathetic neuronal perikarya contained lightly and homogeneously distributed formazan reaction product but there was a range of staining intensities amongst the neuron population. In contrast, in the prevertebral ganglia, intense NADPH-diaphorase staining was present in certain neurons. Firstly, a population of neurons of the coeliac-superior mesenteric ganglion complex were surrounded by densely NADPH-diaphorase-positive baskets of fibres and other stained fibres were seen in interstitial nerve bundles and in nerve trunks connected to the ganglion complex. Secondly, in both the inferior mesenteric ganglion and hypogastric ganglion there were many very intensely NADPH-diaphorase positive neurons. Stained dendritic and axonal processes emerged from these cell bodies. In both ganglia this population of neurons was smaller in size than the lightly stained ganglionic neurons and commonly had only one long (presumably axonal) process. The similarity of these highly NADPH-diaphorase-positive neurons with previously described postganglionic parasympathetic neurons in the hypogastric ganglion is discussed.  相似文献   

11.
Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

12.
Summary Projections and peptide neurotransmitter/neuromodulator content of autonomic and visceral afferent neurons of the guinea pig were studied after application of the subunit B of cholera toxin (CTB) with or without horseradish peroxidase (HRP) as retrograde and anterograde tracers and subsequent immunohistochemical processing for double staining using antibodies raised to CTB, HRP and various neuropeptides. The results demonstrate that substance P (SP)- and calcitonin gene-related peptide (CGRP)-containing dorsal root ganglion cells project to the pylorus as well as to the celiac superior mesenteric and stellate ganglia as demonstrated with both retrograde and anterograde transport methodology. Binding studies revealed that a small number of the CTB-binding dorsal root ganglion cells contains immunoreactivity to SP and CGRP. The majority of the CTB-binding cells is SP- and CGRP-negative and terminate in the deeper parts of the dorsal horn. After injection of CTB conjugated to HRP (B-HRP) into the nodose ganglion, both motor and sensory elements were labeled in the medulla oblongata. Some of the CTB labeled vagal sensory nerve fibers in the nucleus tractus solitarii (NTS) were also found to contain immunoreactivity to SP or CGRP. The tracer was also transported through the peripheral branch of the nodose ganglion cells and labeled terminals in the esophagus.  相似文献   

13.
The purpose of this study was to describe the autonomic innervation of the carotid sinus and heart in the rhesus monkey. Nine male rhesus monkeys (Macaca mulatta) and one male crab-eating macaque (M. fascicularis) were carefully dissected from the origin of the vagus nerves and superior cervical ganglia to the level of the fourth thoracic ganglion. The specimens were either freshly killed or obtained no later than 24 hours post mortem. The macaque monkeys were found to possess an innervation pattern that displayed features common to dog (connections between the vagus nerves and middle cervical ganglia), baboon (distinct cervical sympathetic and cervical vagal nerve trunks), and man (nerves projecting from the middle cervical and stellate ganglia to the heart). Distinct inferior cervical and first thoracic ganglia were never seen, but rather, large and well defined stellate ganglia were found. The macaque innervation pattern, when considered as a whole, most closely resembled the baboon.  相似文献   

14.
Heterogeneous expression of TASK-3 and TRAAK in rat paraganglionic cells   总被引:1,自引:1,他引:0  
In the present study, we investigated the immunohistochemical localization of the two-pore K+ channels, TASK-3 and TRAAK, in paraganglionic cells within the superior cervical ganglion, stellate ganglion, and aortic body in comparison with membrane channels in chief cells of the carotid body. TASK-3 immunoreactivity was observed in the paraganglionic cells in all tissues examined. TRAAK immunoreactivity was observed in the chief cells of the aortic body as well as these of the carotid body, but not in the paraganglionic cells in the sympathetic (superior cervical and stellate) ganglia. Our findings indicate that sympathetic paraganglionic cells and glossopharyngeal/vagal paraganglionic cells were different from each other in the expression patterns of TASK-3 and TRAAK to result in the different chemoreception properties of sympathetic paraganglionic cells from those of chief cells of the aortic and carotid bodies.  相似文献   

15.
Abstract— Immunosympathectomy was produced in Sprague-Dawley rats by the subcutaneous injection of 300 units of nerve growth factor (NGF)-antiserum (1.56 mg of freeze-dried serum)/g/day for 6 days, the first dose being given 5–8 hr after birth. The immunosympathectomized rats and their control littermates were killed 2½ and 7 months after birth. Ganglionic acetylcholinesterase and pseudocholinesterase activities were measured by an adaption (Kungman , Kungman and Pouszczuk , 1968) of the colorimetric method of Ellman , Courtney , Andres and Featherstone (1961). Following immunosympathectomy the activities of these enzymes decreased significantly in superior cervical, stellate, thoracic chain, cardiac (abdominal), coeliac and superior mesenteric ganglia. The reduction of the acetylcholinesterase activity was greater than expected in a number of sympathetic ganglia, e.g. superior cervical, stellate, coeliac and cardiac ganglia, if one considered that only the postganglionic neurons were affected by immunosympathectomy. The activities of these enzymes were also reduced in the cervical sympathetic trunks from NGF-antiserum-treated rats. By means of decentralization and axotomy it was shown that 45 per cent of the total ganglionic acetylcholinesterase activity was associated with the preganglionic and 55 per cent with the postganglionic elements of the superior cervical ganglion from control rats. It was concluded that immunosympathectomy also affects the preganglionic sympathetic neurons. It is not known whether this is a primary effect of the NGF-antiserum or a secondary effect resulting from the absence of over 90 per cent of the postganglionic sympathetic cell bodies.  相似文献   

16.
The synapses of the rat superior cervical sympathetic ganglion were studied with both conventional and ultrastructural histochemical methods. Besides the cholinergic synapses polarized from preganglionic fibers to sympathetic ganglion neurons, two morphologically and functionally different types of synapses were observed in relation to the small granule-containing (catecholamine-containing) cells of the rat superior cervical ganglion. The first type is an efferent adrenergic synapse polarized from granule-containing cells to the dendrites of the sympathetic ganglion neurons. This type of synapse might mediate the inhibitory effects (slow inhibitory postsynaptic potentials) induced by catecholamines on the sympathetic neurons. The second type is a reciprocal type of synapse between the granule-containing cells and the cholinergic preganglionic fibers. Through such synapses, these cells could exert a modulating effect on the excitatory preganglionic fibers. Therefore, we propose that these cells, through their multiple synaptic connections, exhibit a local modulatory feedback system in the rat sympathetic ganglia and may serve as interneurons between the preganglionic and postganglionic sympathetic neurons.  相似文献   

17.
In order to compare the functional state of sympathetic ganglia in spontaneously hypertensive (SHR) with those in normotensive Wistar Kyoto rats (WKY), protein synthetic activity was examined by light microscopic autoradiography with 3H-lysine. The number of silver grains over the cytoplasm of ganglion cells in the superior cervical and stellate ganglia of newborn and 30-day-old animals were counted on photographic enlargements. In both sympathetic ganglia there were significantly more silver grains over ganglion cells in SHR compared with age-matched WKY at 15, 60, and 120 min after injection of 3H-lysine. The increased incorporation of the label by both sympathetic ganglia was more marked in newborn than in 30-day-old animals. This result shows that protein synthetic activity in these ganglion cells is increased in SHR from the newborn stage. It is suggested that a congenital hyperfunction of sympathetic ganglia occurs in SHR.  相似文献   

18.
The present study tested the hypothesis that the trigeminal (V) primary afferent projection to the contralateral dorsal horn originates in midline hairy skin. A prior study (Jacquin et al., 1990) showed that this crossed projection is heaviest to ophthalmic regions of medullary and cervical dorsal horns, and that it does not arise from V ganglion cells that innervate cornea, nasal mucosa, or cerebral dura mater. Here, retrograde double-labeling methods were used to show that many ophthalmic ganglion cells that innervate midline hairy skin via the supraorbital nerve project to the contralateral medullary and upper cervical dorsal horns. Diamidino yellow injections into the right dorsal horn labeled an average of 104 cells in the left V ganglion. Of these contralaterally projecting ganglion cells, an average of 45% were also labeled by horseradish peroxidase (HRP) injections into the left supraorbital nerve, and 25% were also labeled by HRP injections into the midline opthalmic hairy skin. However, only 2% were labeled by HRP injections restricted to left supraorbital vibrissae follicle nerves. Almost all of the double-labeled cells were located in the dorsal one-half of the V ganglion, and they did not differ in size from single-labeled cells.

On the basis of these and prior data, we conclude that a high percentage of contralaterally projecting V ganglion cells originate in midline hairy skin. It is also likely that the contralaterally projecting V ganglion cells serve a low-threshold mechanoreceptive function, given the relatively large ganglion cells and axons giving rise to this pathway and their central terminations in dorsal horn laminae III-V.  相似文献   

19.
The present study tested the hypothesis that the trigeminal (V) primary afferent projection to the contralateral dorsal horn originates in midline hairy skin. A prior study (Jacquin et al., 1990) showed that this crossed projection is heaviest to ophthalmic regions of medullary and cervical dorsal horns, and that it does not arise from V ganglion cells that innervate cornea, nasal mucosa, or cerebral dura mater. Here, retrograde double-labeling methods were used to show that many ophthalmic ganglion cells that innervate midline hairy skin via the supraorbital nerve project to the contralateral medullary and upper cervical dorsal horns. Diamidino yellow injections into the right dorsal horn labeled an average of 104 cells in the left V ganglion. Of these contralaterally projecting ganglion cells, an average of 45% were also labeled by horseradish peroxidase (HRP) injections into the left supraorbital nerve, and 25% were also labeled by HRP injections into the midline opthalmic hairy skin. However, only 2% were labeled by HRP injections restricted to left supraorbital vibrissae follicle nerves. Almost all of the double-labeled cells were located in the dorsal one-half of the V ganglion, and they did not differ in size from single-labeled cells. On the basis of these and prior data, we conclude that a high percentage of contralaterally projecting V ganglion cells originate in midline hairy skin. It is also likely that the contralaterally projecting V ganglion cells serve a low-threshold mechanoreceptive function, given the relatively large ganglion cells and axons giving rise to this pathway and their central terminations in dorsal horn laminae III-V.  相似文献   

20.
Summary Paraffin sections of cervical and upper thoracic paravertebral ganglia of the cat were investigated by immunohistochemistry using antisera directed against calcitonin gene-related peptide (CGRP). The relationships of CGRP-immunoreactive structures to those exhibiting immunoreactivity to antisera against other regulatory peptides and dopamine--hydroxylase (DBH), respectively, were studied in consecutive sections. Singly scattered CGRP-immunoreactive neuronal perikarya were observed in the superior and middle cervical ganglia as well as in the stellate ganglion. These neurons also displayed immunoreactivity to vasoactive intestinal polypeptide (VIP), and some additionally exhibited faint substance-P immunoreactivity. DBH- and neuropeptide Y-immunoreactive ganglion cells were not identical with CGRP-immunoreactive neuronal cell bodies.According to the immunoreactive properties of varicosities, which abut on CGRP/VIP-immunoreactive perikarya, three types of CGRP/VIP-immunoreactive ganglion cells could be distinguished: (1) CGRP/VIP-immunoreactive neurons being surrounded by somatostatin-immunoreactive nerve fibers, (2) neurons being approached by both DBH- and met-enkephalin-immunoreactive varicosities, and (3) neurons receiving both DBH- and neurotensin-immunoreactive fibers. The stellate and upper thoracic ganglia harbored clusters of intensely VIP-immunoreactive somata, which lacked CGRP-immunoreactivity. Fine somatostatin-immunoreactive and coarse CGRP-immunoreactive fibers were distributed within these clusters, whereas patches of neurotensin-immunoreactive fibers were complementarily arranged. At all segmental levels investigated, a few postganglionic neurons were approached by both CGRP-immunoreactive and substance P-immunoreactive varicosities, but lacked a VIP-immunoreactive innervation. Therefore, CGRP/substance P-immunoreactive fiber baskets appeared rather to be of extraganglionic origin than to emerge from intraganglionic CGRP/VIP/SP neurons. CGRP-immunoreactive cell bodies or fibers were absent in clusters of small paraganglionic cells, but some of the solitary paraganglionic cells displayed CGRP-immunoreactivity. Our findings establish the presence of CGRP-immunoreactivity in a population of sympathetic neurons in the cat. A highly differentiated, segment-dependent organizational pattern of neuropeptides in cervico-thoracic paravertebral ganglia was demonstrated.Supported by Deutsche Forschungsgemeinschaft grant He 919/6-2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号