首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central corticotropin-releasing factor (CRF) plays an important role in mediating restraint stress-induced delayed gastric emptying. However, it is unclear how restraint stress modulates gastric motility to delay gastric emptying. Inasmuch as solid gastric emptying is regulated via antropyloric coordination, we hypothesized that restraint stress impairs antropyloric coordination, resulting in delayed solid gastric emptying in conscious rats. Two strain gauge transducers were sutured onto the serosal surface of the antrum and pylorus, and postprandial gastric motility was monitored before, during, and after restraint stress. Antropyloric coordination, defined as a propagated single contraction from the antrum to the pylorus within 10 s, was followed by > or = 20 s of quiescence. Restraint stress enhanced postprandial gastric motility in the antrum and pylorus to 140 +/- 9% and 134 +/- 9% of basal, respectively (n = 6). The number of episodes of antropyloric coordination before restraint stress, 2.4 +/- 0.4/10 min, was significantly reduced to 0.6 +/- 0.3/10 min by restraint stress. Intracisternal injection of the CRF type 2 receptor antagonist astressin 2B (60 microg) or guanethidine partially restored restraint stress-induced impairment of antropyloric coordination (1.6 +/- 0.3/10 min, n = 6). The restraint stress-induced augmentation of antral and pyloric contractions was increased by astressin 2B and guanethidine but abolished by atropine, hexamethonium, and vagotomy. Restraint stress enhanced postprandial gastric motility via a vagal cholinergic pathway. Restraint stress-induced delay of solid gastric emptying is due to impairment of antropyloric coordination. Restraint stress-induced impairment of antropyloric coordination might be mediated via a central CRF pathway.  相似文献   

2.
Bronchialvasodilation in dogs is mediated largely by vagal pathways. To examinethe relative contribution of cholinergic and noncholinergicparasympathetic pathways and of sensory axon reflexes to vagalbronchial vasodilation, we electrically stimulated the peripheral vagusnerve in 10 chloralose-anesthetized dogs and measured bronchial arteryflow. Moderate-intensity electrical stimulation (which did not activateC-fiber axons) caused a rapid voltage- and frequency-dependentvasodilation. After atropine, vasodilation was slower in onset andreduced at all voltages and frequencies: bronchial vascular conductanceincreased by 9.0 ± 1.5 (SE)ml · min1 · 100 mmHg1 during stimulationbefore atropine and 5.5 ± 1.4 ml · min1 · 100 mmHg1 after(P < 0.02). High-intensitystimulation (sufficient to recruit C fibers) was not studied beforeatropine because of the resulting cardiac arrest. After atropine,high-intensity stimulation increased conductance by 12.0 ± 2.5 ml · min1 · 100 mmHg1. Subsequent blockadeof ganglionic transmission, with arterial blood pressure maintained bya pressure reservoir, abolished the response to moderate-intensitystimulation and reduced the increase to high-intensity stimulation by82 ± 5% (P < 0.01). In 13 other dogs, we measured vasoactive intestinalpeptide-like immunoreactivity in venous blood draining from thebronchial veins. High-intensity vagal stimulationincreased vasoactive intestinal peptide concentration from 5.7 ± 1.8 to 18.4 ± 4.1 fmol/ml (P = 0.001). The results suggest that in dogs cholinergic and noncholinergicparasympathetic pathways play the major role in vagal bronchial vasodilation.

  相似文献   

3.
Role of vagus nerves in experimental asthma in allergic dogs   总被引:14,自引:0,他引:14  
  相似文献   

4.
5.
Gastric electrical stimulation (GES) has recently been explored as a therapeutic option for gastrointestinal motility disorders or obesity. The mechanism behind it is not fully elucidated. The aims of this study were to assess the effects of GES with different parameters on antral tone and to explore the involvement of the nitrergic pathway. Eight dogs equipped with a gastric cannula and one pair of serosal electrodes in the greater curvature 4 cm above the pylorus were studied on separate days. The study was composed of seven randomized sessions in the fed state [control, GES with different parameters, and GES plus neuronal nitric oxide synthase (nNOS) inhibitor]. Each session included three consecutive 30-min periods (baseline, GES, and recovery). GES was performed with long pulses or pulse trains. The antral volume was measured using an intragastric balloon connected with a barostat device. Behaviors of the dogs during each stimulation period were also noted. We found that 1) postprandial antral tone was reduced with GES with all tested parameter settings, reflected as a significant and substantial increase in antral volume ranging from 179 to 309%; 2) the inhibitory effect of GES on antral tone was partially blocked (decreased by 39.5%) with an nNOS inhibitor; and 3) mild symptoms were induced with GES and found to be correlated with the GES-induced increase in antral volume. We conclude that retrograde GES with long pulses or pulse trains inhibits antral tone, and this inhibitory effect is partially mediated via the nitrergic pathway. These results suggest that retrograde GES may have a therapeutic potential for obesity.  相似文献   

6.
We determined if blocking transmission in the fibers of the vagus nerves would affect basal hepatic glucose metabolism in the 18-h-fasted conscious dog. A pancreatic clamp (somatostatin, basal portal insulin, and glucagon) was employed. A 40-min control period was followed by a 90-min test period. In one group, stainless steel cooling coils (Sham, n = 5) were perfused with a 37 degrees C solution, while in the other (Cool, n = 6), the coils were perfused with -20 degrees C solution. Vagal blockade was verified by heart rate change (80 +/- 9 to 84 +/- 14 beats/min in Sham; 98 +/- 12 to 193 +/- 22 beats/min in Cool). The arterial glucose level was kept euglycemic by glucose infusion. No change in tracer-determined glucose production occurred in Sham, whereas in Cool it dropped significantly (2.4 +/- 0.4 to 1.9 +/- 0.4 mg. kg(-1). min(-1)). Net hepatic glucose output did not change in Sham but decreased from 1.9 +/- 0.3 to 1.3 +/- 0.3 mg. kg(-1). min(-1) in the Cool group. Hepatic gluconeogenesis did not change in either group. These data suggest that vagal blockade acutely modulates hepatic glucose production by inhibiting glycogenolysis.  相似文献   

7.
Parasympathetic neural activity modulates some ventricular arrhythmias in man. Therefore, a canine model of arrhythmias produced by the interaction of halothane and catecholamines was used to study the effects of vagal stimulation on the induction of ventricular fibrillation. The dose of catecholamine required to induce ventricular fibrillation was determined during a constant heart rate. Vagal stimulation reversibly raised the norepinephrine dose that produced ventricular fibrillation from 16.4 +/- 2.4 to 30.0 +/- 3.8 micrograms (p less than 0.001, n = 10), and the epinephrine dose from 15.5 +/- 2.0 to 22.5 +/- 2.6 micrograms (p less than 0.001, n = 5). Following atropine, vagal stimulation failed to raise the threshold dose of norepinephrine (16.8 +/- 2.4 vs. 18.3 +/- 3.3 micrograms, nonsignificant, n = 6) or epinephrine (15.5 +/- 2.0 vs. 16.0 +/- 2.3 micrograms, nonsignificant, n = 5). Ligation of the cervical vagus nerves did not affect the epinephrine threshold dose (16.3 +/- 3.3 vs. 17.5 +/- 2.7 micrograms, nonsignificant, n = 5). Following elevation of basal vagal tone by morphine premedication, the norepinephrine threshold of 53.0 +/- 9.2 micrograms declined by a nonsignificant amount to 46.5 +/- 11.5 micrograms after vagotomy (nonsignificant, n = 5). Thus resting vagal tone does not prevent catecholamine-halothane-induced ventricular fibrillation, whereas increasing vagal tone by electrical stimulation substantially protects against this arrhythmia. The protection is mediated through a muscarinic cholinergic receptor.  相似文献   

8.
During a first series of experiments, the gastrin responses to a meal were measured and compared to the responses seen after administration of cimetidine (2.5 mg/kg/h) or omeprazole (2 mg/kg). During a second series of experiments the effects of cimetidine (2.5 mg/kg/h), ranitidine (0.5 mg/kg/h) and omeprazole (2 mg/kg) on post-prandial gastrin and somatostatin release were determined in experiments during which the intragastric pH was maintained close to 6.4. During a third series of experiments, the effects of cimetidine (2.5 mg/kg/h) and omeprazole (2 mg/kg) on basal gastrin and somatostatin release were estimated. Postprandial gastrin release was increased by cimetidine and by omeprazole. When acidification of the gastric content was prevented by intragastric titration, postprandial gastrin release was increased by about 100%. No further increase was observed when the animals were concomitantly treated with cimetidine, ranitidine or omeprazole. Intragastric titration did not alter postprandial somatostatin release. Concomitant administration of H2 blockers decreased the somatostatin response to the meal, while concomitant administration of omeprazole did not alter this release. No significant changes were observed in basal gastrin or somatostatin levels after administration of cimetidine or omeprazole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
The aim of this work was to determine the influence of the vagus on the circulating levels of immunoreactive (IR) motilin. Five mongrel dogs were equipped with chronically implanted electrodes in the small intestine to record the myoelectrical activity. The release of IR motilin during fasting, after a meal, and during an infusion of insulin was studied before and after truncal vagotomy at the diaphragmatic level. When tested at least two weeks after the operation, the motility pattern of the small intestine and the secretion of IR motilin remained unaltered by vagal section. Cyclic increases in IR motilin associated with phase III's of the interdigestive myoelectric complexes were still observed after vagotomy (maximum levels of IR motilin: 250 +/- 37 versus 239 +/- 19 fmol X mL-1, not significant), and they were still abolished by feeding or by insulin. However, an inhibitory influence can probably be mediated by the vagus since, in normal animals, vagal stimulation by a "modified sham feeding" (tease feeding or presentation of food) at the beginning of a period of phase III activity promptly interrupted this part of the complex and decreased significantly the release of IR motilin by about 20%. The release of motilin is not chronically altered by distal vagotomy in dogs.  相似文献   

12.
This study was designed to determine the role of cholecystokinin (CCK) in postprandial motility pattern of the duodenum and gallbladder (GB) in conscious dogs provided with chronic duodenal electrodes for recording of myoelectric activity and GB fistulas for measurement of intraluminal pressure and volume of GB and to calculate the GB motility index (MI) and GB emptying rate. During naturally occurring activity front (phase III MMC) in the duodenum there was significant increase in the MI of GB accompanied by about 20-30% reduction in the GB volume. These changes in duodenal and GB motility pattern could be duplicated by i.v. motilin. Feeding abolished the appearance of spontaneous activity front in the duodenum and greatly increased motility of GB while reducing its volume. Administration of CCK receptor antagonists in fed dogs failed to affect the motility changes induced by meal in the duodenum but abolished these of the GB. Vagal cholinergic stimulation with insulin, 2DG or urecholine caused similar effects to that induced by food i.e. increased duodenal spike activity, abolished phase III of the MMC, decreased GB volume and increased GB motility. Pretreatment with CCK antagonists did not affect significantly duodenal spike activity or GB motility but significantly increased the GB volume. Atropine 125 micrograms/kg) blocked almost completely spontaneous activity front in the duodenum and accompanying alterations in the motility and volume of GB. We conclude that CCK contributes to the MMC related alterations in the GB motor activity and is essential in cholinergic stimulation induced of the GB emptying but not in vagally induced duodenal and GB motility.  相似文献   

13.
Vanilloids were shown to interact with over 70% of vagal C-afferents first causing an excitation followed by desensitisation and a lasting destruction of nerve fibres. Capsaicin induces a secretion of some neuropeptides from 10-30% of vagal sensory terminals and therefore serves as a pharmacological tool for testing local "effector function" of primary afferents. Vagal afferents seem to have their own subtype of vanilloid receptors (VR), not completely identical with the VR receptors in the dorsal root ganglia. Considering potentiation of the capsaicin receptors sensitivity by some factors such as local heating, pH, free oxygen radicals, a possible role of the VRs as integrators of chemical and physical components of nociceptive stimuli, is discussed.  相似文献   

14.
The electrostimulation of vagal nerves, the effect of naloxone and atropine on duodenal afferentation by registering evoked potential (EP) at cortex on direct electrostimulation of duodenum have been studied in acute experiments on cats. It has been established that the stimulation of afferent portion of vagal nerves causes the effect of deprivation of EP, whereas the stimulation with certain intensity of efferent portion of vagal nerves intensifies the duodenal afferentation. The effect of afferentation easeness (relief) has been blocked by the application of naloxone 10-20 microgram on duodenal bulbus, but not on it's i. v. injection and without effect on local application of atropine. It is concluded that the role of vagal nerves on the modulation of duodenal nociception is due to the activation of opiate terminals of the efferent vagal nerve portions.  相似文献   

15.
In serial electively stained transversal sections of the vagus nerve trunk taken at the levels beginning from its exit out of the brain, up to terminal branches in the abdominal cavity (10 corpses of mature persons) myelin fibers of three classes have been counted. Along the course of the nerve trunk in the craniocaudal direction the total number of the myelin fibers decreases. Only about 10% of the initial amount of the myelin conductors revealed at the level of the intracranial part of the vagus nerve get into the abdominal cavity. Simultaneously, the ratio of the myelin fibers belonging to different classes changes: the part of the fine conductors increases, and that of the fibers having middle and large diameters decreases. The most important in the dynamics of the whole amount of myelin fibers and in the number of the conductors belonging to different classes at all the levels of the nerve trunk is the getting off the organs' branches with various functional specialization.  相似文献   

16.
17.
Octreotide is a somatostatin analog that constricts the splanchnic circulation, thereby improving orthostatic tolerance. We tested the hypotheses that octreotide improves orthostatic tolerance by 1)increasing cardiac filling (right atrial) pressure via reductions in vascular capacity; 2) by causing an upward (i.e., cranial) shift of the hydrostatic indifferent point; and 3) by increasing arterial pressure via a reduction in total vascular conductance. Studies were carried out in acepromazine-sedated, hexamethonium-treated atrioventricular-blocked conscious dogs lightly restrained in lateral recumbency. Beat-by-beat cardiac output was held constant via computer-controlled ventricular pacing at rest and during 30 s of 30° head-up tilt. Octreotide (1.5 μg/kg iv) raised right atrial pressure by 0.5 mmHg and raised mean arterial pressure by 11 mmHg by reducing total vascular conductance (all P < 0.05). Right atrial pressure fell by a similar amount in response to tilting before and after octreotide, thus there was no difference in location of the hydrostatic indifferent point. These data indicate that octreotide improves orthostatic tolerance by decreasing total vascular conductance and by increasing cardiac filling pressure via a reduction in unstressed vascular volume and not by eliciting a cranial shift of the location of the hydrostatic indifferent point.  相似文献   

18.
19.
20.
《Neuron》2022,110(4):579-599
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号