首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Japanese monkey pepsinogen was activated at pH 2.0 in the absence of pepstatin, the activation segment of the amino(N)-terminal 47 residues was released as a single intact polypeptide. This clearly shows that the pepsinogen was activated to pepsin directly. This direct activation was called a 'one-step' process. On the other hand, when pepsinogen was activated at pH 2.0 in the presence of pepstatin, an appreciable amount of pepsinogen was converted to an intermediate form between pepsinogen and pepsin, although a part of pepsinogen was activated directly to pepsin. The intermediate form was generated by releasing the N-terminal 25 residues of pepsinogen. This activation through the intermediate form is thought to be a 'two-step' or 'stepwise-activating' process involving a bimolecular reaction between pepstatin-bound pepsinogen and free pepsin.  相似文献   

2.
Intramolecular pepsinogen activation is inhibited either by pepstatin, a potent pepsin inhibitor, or by purified globin from hemoglobin, a good pepsin substrate. Also, pepsinogen at pH 2 can be bound to a pepstatin-Sepharose column and recovered as native zymogen upon elution in pH 8 buffer. Kinetic studies of the globin inhibition of pepsinogen activation show that globin binds to a pepsinogen intermediate. This interaction gives rise to competitive inhibition of intramolecular pepsinogen activation. The evidence presented in this paper suggests that pepsinogen is converted rapidly upon acidification to the pepsinogen intermediate delta. In the absence of an inhibitor, the intermediate undergoes conformational change to bind the activation peptide portion of this same pepsinogen molecule in the active center to form an intramolecular enzyme-substrate complex (intermediate theta). This is followed by the intramolecular hydrolysis of the peptide bond between residues 44 and 45 of the pepsinogen molecule and the dissociation of the activation peptide from the pepsin. Intermediate delta apparently does not activate another pepsinogen molecule via an intermolecular process. Neither does intermediate delta hydrolyze globin substrate.  相似文献   

3.
1. Evidence is given for the presence of at least five pepsinogens in a crude extract of mixed chicken stomachs. One of these was purified and could be activated to yield a single pepsin. 2. The molecular weights of the pepsinogen and pepsin were 36000 and 34000 respectively. The pepsin associated at low pH values and low ionic strength. 3. The amino acid analyses of both proteins are given. The pepsin was devoid of phosphate but contained carbohydrate. 4. The N-terminal amino acids of pepsinogen and pepsin were serine and threonine respectively. Five amino acids were released by carboxypeptidase A and it was deduced that serine may be the C-terminal one. 5. Each protein contained one thiol group per molecule as determined by titration with p-chloromercuribenzoate. The rate of the reaction was very rapid with pepsin, but much slower with pepsinogen, although the same group appeared to react in both instances. The enzymic activity of pepsin was unaffected by the modification. 6. The isoionic point of the pepsin was close to pH4.0 and the enzyme was stable for long periods at pH values up to 7.0. 7. The enzyme hydrolysed bisphenyl sulphite almost as rapidly as did pig pepsin A.  相似文献   

4.
Above pH 6, swine pepsin undergoes a conformational change to a neutral form which has 80% of the secondary structure of the native protein. In contrast to native pepsin, this form of the enzyme can be reversibly unfolded by urea in a rapid, cooperative reaction. Since all of pepsin's sequence is present in its precursor pepsinogen, it is likely that this neutral structure is present in one or more of the transient intermediates previously detected in the reversible unfolding reaction of the zymogen. The mechanism of this rapid reaction may resemble early steps in protein folding.  相似文献   

5.
Activation of porcine pepsinogen at pH 2.0 was found to proceed simultaneously by two different pathways. One pathway is the direct conversion process of pepsinogen to pepsin, releasing the intact activation segment. The isolation of the released 44-residue segment was direct evidence of this one-step process. At pH 5.5 the segment bound tightly to pepsin to form a 1:1 pepsin-activation segment complex, which was chromatographically indistinguishable from pepsinogen. The other is a stepwise-activating or sequential pathway, in which pepsinogen is activated to pepsin through intermediate forms, releasing activation peptides stepwisely. These intermediate forms were isolated and characterized. The major intermediate form was shown to be generated by removal of the amino-terminal 16 residues from pepsinogen. The released peptide mixture was composed of two major peptides comprising residues 1-16 and 17-44, and hence the stepwise-activating process was deduced to be mainly a two-step process.  相似文献   

6.
1. A method is described for the preparation of pepsinogen from swine gastric mucosae which consists of extraction and fractional precipitation with ammonium sulfate solutions followed by two precipitations with a copper hydroxide reagent under particular conditions. Crystallization as very thin needles takes place at 10°C., pH 5.0 and from 0.4 saturated ammonium sulfate solution containing 3–5 mg. protein nitrogen per milliliter. 2. Solubility measurements, fractional recrystallization, and fractionation experiments based on separation after partial heat or alkali denaturation and after partial reversal of heat or alkali denaturation failed to reveal the presence of any protein impurity. 3. The properties of the enzymatically inactive pepsinogen were studied and compared with the properties of crystalline pepsin. The properties of pepsinogen which are similar to those of pepsin are: molecular weight, absorption spectrum, tyrosine-tryptophane content, and elementary analysis. The properties in which they differ are: enzymatic activity, crystalline form, amino nitrogen, titration curve, pH stability range, specific optical rotation, isoelectric point, and the reversibility of heat or alkali denaturation. 4. Conversion of pepsinogen into pepsin at pH 4.6 was found to be autocatalytic; i.e., the pepsin formed catalyzes the reaction. Conversion of pepsinogen into pepsin is accompanied by the splitting off of a portion of the molecule containing 15–20 per cent of the pepsinogen nitrogen.  相似文献   

7.
Conformational changes induced in pepsin and pepsinogen by iodination of tyrosine residues and the possible role of lysine residues on conformational stability of pepsinogen are investigated by circular dichroism (CD) studies in solution. At low degrees of iodination (6 I/molecule) the pepsin molecule denatured, with complete loss of β-structure at pH 5.5. Pepsinogen showed greater resistance to conformational change on iodination (10 I/molecule) and about 30% of its ordered structure is retained. In the aromatic region, the tyrosyl CD bands of iodinated pepsin decreased in intensity, indicating a change in the environment of tyrosine residues. A comparison with the CD spectra of expanded structures of pepsin in 6 m guanidine hydrochloride or alkaline solutions (pH 9.75) indicated retention of a significant amount of tertiary structure in iodinated pepsin. Changes in tertiary structures were marginal on iodination of pepsinogen. Less than 1% (residue moles) of poly-l-lysine, a known inhibitor, was found to destabilize the secondary and tertiary structure of pepsin at pH 6.75, although the lysine-rich 1–44 segment of pepsinogen tends to stabilize the conformation of the pepsin chain. This seems to suggest that the inhibitory effects of polylysine on pepsin occur by a mechanism different from that of the activity-limiting effect of the lysine-rich 1–44 segment of pepsinogen.  相似文献   

8.
The mechanism of activation of pepsinogen was studied. It was found that no peptide bond cleavage occurred in the molecule of denatured pepsinogen at pH 2. It was inferred from this that a specific secondary and tertiary structure is formed in the molecule of pepsinogen in acid and that it might be necessary for the hydrolysis of the peptide bond. From the circular dichroism studies on pepsinogen and pepsin, it was found that there is a conformational change in the molecule of pepsinogen at pH 4.3~4.5 and that this change is followed by a gradual formation of pepsin.  相似文献   

9.
A crude extract of the proventriculus of the Japanese quail gave at least five bands of peptic activity at pH 2.2 on polyacrylamide gel electrophoresis. The main component, constituting about 40% of the total acid protease activity, was purified to homogeneity by hydroxyapatite and DEAE-Sepharose column chromatographies. At below pH 4.0, the pepsinogen was converted to a pepsin, which had the same electrophoretic mobility as one of the five bands of peptic activity present in the crude extract. The molecular weights of the pepsinogen and the pepsin were 40 000 and 36 000, respectively. Quail pepsin was stable in alkali up to pH 8.5. The optimal pH of the pepsin on hemoglobin was pH 3.0. The pepsin had about half the milk-clotting activity of purified porcine pepsin, but the pepsinogen itself had no activity. The hydrolytic activity of quail pepsin on N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine was about 1% of that of porcine pepsin. Among the various protease inhibitors tested, only pepstatin inhibited the proteolytic activity of the pepsin. The amino acid composition of quail pepsinogen was found to be rather similar to that of chick pepsinogen C, and these two pepsinogens possessed common antigenicity.  相似文献   

10.
Upon activation at pH 2.0 and 14°C, a significant portion of porcine pepsinogen was found to be converted directly to pepsin, releasing the 44-residue intact activation segment. The released segment was further cleaved to smaller peptides at pH 2.0, but at pH 5.5 it formed a tight complex with pepsin, and the complex was chromatographically indistinguishable from pepsinogen. This intact segment could be isolated for the first time. Thus one-step activation occurs in porcine pepsinogen along with the already known sequential activation.  相似文献   

11.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with alpha-, beta-, or kappa-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

12.
Prorenin is an inactive form of the aspartic protease renin. Like pepsinogen, it is activated at low pH. The kinetics of acid activation of prorenin were studied in human amniotic fluid and plasma and in preparations of purified prorenin isolated from amniotic fluid and plasma. Conversion of prorenin (pR) into active renin (R) appeared to be a two-step process involving the generation of an intermediary form of activated prorenin (pRa). The pR----pRa step is an acid-induced reversible change in the conformation of the molecule, and the pRa----R step is proteolytic. pRa----R conversion occurred in amniotic fluid at low pH by the action of an endogenous aspartic protease. In plasma pRa----R conversion occurs after restoration of pH to neutral and is caused by the serine protease plasma kallikrein. pRa----R conversion did not occur in purified preparations of prorenin. Thus, in contrast to pepsinogen, the acid-induced reversible conformational change is not followed by autocatalysis. pRa of amniotic fluid and plasma could be separated from R by affinity chromatography on Cibacron blue F3GA-agarose, and R but not pRa was detected by an immunoassay using monoclonal antibodies reacting with R and not with pR. The first-order rate constant for pR----pRa conversion depends on the protonation of a polar group (or groups) with pK approximately 3.4, the rate constant being proportional to the fraction of pR molecules that have this group protonated. This is analogous to the reversible acid-induced conformational change of pepsinogen that occurs before its proteolytic conversion into pepsin. kcat/Km for pRa----R conversion by plasmin and plasma kallikrein at pH 7.4 and 37 degrees C was 7.8 X 10(6) and 5.2 X 10(6) M-1 min-1, respectively, which was about 50-70 times greater than for pR----R conversion. The susceptibility of pRa to proteolytic attack is high enough for the intrinsic factor XII-kallikrein pathway to cause rapid pRa----R conversion at 37 degrees C even in whole blood with its abundance of serine protease inhibitors. Formation of pRa may occur in vivo in an acidic cellular compartment, such as exo- or endocytotic vesicles.  相似文献   

13.
It was found that at pH 5.2 and 40-fold excess of p-nitrophenyldiazonium chloride the inhibitor incorporation into the porcine pepsin molecule involves 1.9 residues, one residue being bound to tyrosine 189. Besides, tyrosines 44, 113, 154 and 174 enter the reaction. Modified pepsin retains 25% of the native enzyme activity. In the pepsinogen molecule the degree of tyrosine 189 modification diminishes 5 times; of 1.5 inhibitor molecules incorporated into the protein 0.78 residues are bound to tyrosine 113. The potential proteolytic activity of modified pepsinogen towards haemoglobin cleavage makes up to 60% of the original one. It is concluded that the activation peptide in the pepsinogen molecule masks the substrate binding site bearing tyrosine 189, thus preventing its modification with p-nitrophenyldiazonium chloride. The activation peptide in the pepsinogen molecule is presumably located in the vicinity of the wide loop bend carrying tyrosine residue 113, which may be the reason for the decreased pKa value of this residue and of its increased reactivity in the azocoupling reaction.  相似文献   

14.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with α-, β-, or κ-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

15.
A clone, pSPcA2, which carries the full-length swine pepsinogen cDNA was isolated. The coding sequence comprised the signal peptide [15 amino acids (aa)], the activation peptide segment (44 aa) and mature pepsin (327 aa). The deduced amino acid sequence agrees with the published sequence with two exceptions. Asparagine instead of aspartate is present at aa positions 19 and 308. Two types of plasmids, pAS and pUCtacSPc series, were constructed for expressing swine pepsinogen cDNA. These plasmids directed the synthesis of polypeptides which were detected by employing an antibody to swine pepsinogen. However, all the polypeptides formed aggregates and showed no acid protease activity. Only the protein directed by pAS5 regained the acid protease activity after renaturation procedures. The activity was completely inhibited by pepstatin. Furthermore, the renatured pAS5 protein was spontaneously converted to pepsin under acidic conditions. The presence of Arg-8 in the activation peptide segment appears important for the stabilization of the pepsinogen molecule.  相似文献   

16.
Upon activation of human pepsinogen A at pH 2.0 in the presence of pepstatin, an intermediate form was generated together with pepsin A. This activation intermediate could be separated from pepsinogen A and pepsin A by DE-32 cellulose chromatography at pH 5.5. It had a molecular weight intermediate between those of pepsinogen A and pepsin A, and contained about half the number of basic amino acid residues in pepsinogen A. It had phenylalanine as the amino(N)-terminal amino acid, and was deduced to be generated by release of N-terminal 25 residue segment from pepsinogen A. Amino acid sequence determination of the N-terminal portions of pepsinogen A and the intermediate from enabled us to elucidate the entire acid sequence of the 47-residue activation peptide segment as follow: [Formula: see text]. On the other hand, upon activation of pepsinogen A at pH 2.0 in the absence of pepstatin, cleavage of the activation segment occurred at several additional bonds. In addition, upon activation both in the presence and in the absence of pepsitatin, an additional activation intermediate, designated pepsin A', was formed in minor quantities. This form was identical with pepsin A, except that it had an additional Pro-Thr-Leu sequence preceding the N-terminal valine of pepsin A.  相似文献   

17.
Single crystals of porcine pepsinogen, suitable for x-ray diffraction studies, have been grown with lithium sulfate as the precipitant. These pepsinogen crystals were dissolved, activated, and assayed for proteolytic activity. The specific enzymic activity of the dissolved crystalline protein was nearly twice that of the commerical pepsinogen from which the crystals were grown. Incubation at pH 8 before assay demonstrated that the crystals are free of pepsin. This crystal form of pepsinogen belongs to the monoclinic space group C2 with 4 molecules in the unit cell. The unit cell dimensions are a = 104.8 +/- 0.5 A, b = 43.1 +/- 0.1 A, c = 88.4 +/- 0.3 A, and beta = 91.3 degrees.  相似文献   

18.
Monkey pepsinogen A, monkey progastricsin, and porcine pepsinogen A were activated in the presence of two different protein substrates, namely, reduced and carboxymethylated lysozyme and hemoglobin. In each case, an extensive delay in activation was observed. The intermolecular activation reaction required for the generation of pepsin or gastricsin was strongly inhibited and this inhibition was essentially responsible for the delay. However, the intramolecular reaction required for the generation of the intermediate forms of the proenzymes was scarcely affected. The delay was longer at pH 3.0 than at pH 2.0. Irrespective of the delay in activation of pepsinogen, the digestion of substrates proceeded rapidly, evidence of the significant proteolytic activity of pepsinogen itself. Kinetic experiments demonstrated that pepsinogen changed from an enzymatically inactive species to an active species before the release of the activation segment. The proteolytic activity of the active pepsinogen was highest at pH 2.0, at 37 degrees C and the activity under these conditions was comparable to that of pepsin.  相似文献   

19.
Pepsinogen was isolated from the gastric mucosa of Trimeresurus flavoviridis (Habu snake) by DEAE-cellulose and DEAE-Sepharose ion-exchange chromatographies, and Sephacryl S-200 gel-chromatography. The yield calculated from the crude extract was 29% with 6.2-fold purification. The purified pepsinogen gave a single band on both native- and SDS-PAGE. As no other active enzyme was detected on the chromatographies, it was concluded that the Habu snake has one major pepsinogen. The molecular mass of the pepsinogen was estimated to be 38 kDa by SDS-PAGE. The sequence of the N-terminal 26 amino acid residues was determined and compared with those of other pepsinogens. The N-terminal structure of Habu snake pepsinogen was more homologous with those of mammalian pepsinogens C than those of mammalian pepsinogens A. The pepsinogen was rapidly converted to pepsin by way of an intermediate form induced by acidification. The optimum pH of Habu snake pepsin for bovine hemoglobin was 1.5-2.0, and it retained full activity at pH 6.2 and 30 degrees C on incubation for 30 min. The optimum temperature for the snake pepsin was 50 degrees C and it was stable at 40 degrees C on incubation for 10 min. The proteolytic activity of the pepsin toward bovine hemoglobin was about two times higher than that of porcine pepsin A, however, the activity toward oxidized bovine insulin B-chain was lower than that of porcine pepsin A, and it did not hydrolyze oligopeptides. The specificity for oxidized bovine insulin B-chain of the pepsin was different from that of porcine pepsin A. Habu snake pepsin was inhibited by pepstatin A but not by serine, cysteine, or metallo protease inhibitors.  相似文献   

20.
Pepsinogen and Pepsin   总被引:2,自引:0,他引:2       下载免费PDF全文
Evidence relating to the structure and properties of swine pepsinogen and pepsin has been reviewed and used to suggest a tentative two dimensional picture of the skeleton of these two proteins. When pepsinogen, a folded single peptide chain, is converted to pepsin, there is a profound change in the physical and chemical properties of the protein. In an as yet unknown manner, except that it is initiated by a peptic cleavage of the protein chain, a single enzymic site is formed. This site is made up, quite probably, of the secondary carboxyl group of glutamic acid or of aspartic acid and a tyrosine phenol group in close proximity so that they can form hydrogen or hydrophobic bonds with the substrate in some unique manner that permits hydrolysis to occur at an accelerated rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号