首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigated the influence of pH and divalent cations (Zn2+, Mg2+ and Ca2+) on high molecular weight kininogen processing by cathepsin B. At pH 6.3, high molecular weight kininogen is hydrolyzed by cathepsin B at three sites generating fragments of 80, 60 and 40 kDa. Cathepsin B has kininogenase activity at this pH which is improved in the absence of divalent cations. At pH 7.35, high molecular weight kininogen is slightly cleaved by cathepsin B into fragments of 60 kDa, and cathepsin B kininogenase activity is impaired. Our results suggest that high molecular weight kininogen is a substrate for cathepsin B under pathophysiological conditions.  相似文献   

3.
Inhibition of cell adhesion by high molecular weight kininogen   总被引:10,自引:0,他引:10       下载免费PDF全文
An anti-cell adhesion globulin was purified from human plasma by heparin-affinity chromatography. The purified globulin inhibited spreading of osteosarcoma and melanoma cells on vitronectin, and of endothelial cells, platelets, and mononuclear blood cells on vitronectin or fibrinogen. It did not inhibit cell spreading on fibronectin. The protein had the strongest antiadhesive effect when preadsorbed onto the otherwise adhesive surfaces. Amino acid sequence analysis revealed that the globulin is cleaved (kinin-free) high molecular weight kininogen (HKa). Globulin fractions from normal plasma immunodepleted of high molecular weight kininogen (HK) or from an individual deficient of HK lacked adhesive activity. Uncleaved single-chain HK preadsorbed at neutral pH, HKa preadsorbed at pH greater than 8.0, and HKa degraded further to release its histidine-rich domain had little anti-adhesive activity. These results indicate that the cationic histidine-rich domain is critical for anti-adhesive activity and is somehow mobilized upon cleavage. Vitronectin was not displaced from the surface by HKa. Thus, cleavage of HK by kallikrein results in both release of bradykinin, a potent vasoactive and growth-promoting peptide, and formation of a potent anti-adhesive protein.  相似文献   

4.
Fibrinogen inhibited 125I-high molecular weight kininogen (HMWK) binding and displaced bound 125I-HMWK from neutrophils. Studies were performed to determine whether fibrinogen could bind to human neutrophils and to describe the HMWK-fibrinogen interaction on cellular surfaces. At 4 degrees C, the binding of 125I-fibrinogen to neutrophils reached a plateau by 30 min and did not decrease. At 23 and 37 degrees C, the amount of 125I-fibrinogen bound peaked by 4 min and then decreased over time because of proteolysis of fibrinogen by human neutrophil elastase (HNE). Zn++ (50 microM) was required for binding of 125I-fibrinogen to neutrophils at 4 degrees C and the addition of Ca++ (2 mM) increased the binding twofold. Excess unlabeled fibrinogen or HMWK completely inhibited binding of 125I-fibrinogen. Fibronectin degradation products (FNDP) partially inhibited binding, but prekallikrein and factor XII did not. The binding of 125I-fibrinogen at 4 degrees C was reversible with a 50-fold molar excess of fibrinogen or HMWK. Binding of 125I-fibrinogen, at a concentration range of 5-200 micrograms/ml of added radioligand, was saturable with an apparent Kd of 0.17 microM and 140,000 sites/cell. The binding of 125I-fibrinogen to neutrophils was not inhibited by the peptide RGDS derived from the alpha chain of fibrinogen or by the mAb 10E5 to the platelet glycoprotein IIb/IIIa heterodimer. Fibrinogen binding was inhibited by a gamma-chain peptide CYGHHLGGAKQAGDV and by mAb OKM1 but was not inhibited by OKM10, an mAb to a different domain of the adhesion glycoprotein Mac-1 (complement receptor type 3 [CR3]). HMWK binding to neutrophils was not inhibited by OKM1. These observations were consistent with a further finding that fibrinogen is a noncompetitive inhibitor of 125I-HMWK binding to neutrophils. Fibrinogen binding to ADP-stimulated platelets was increased twofold by Zn++ (50 microM) and was inhibited by HMWK. These studies indicate that fibrinogen specifically binds to the C3R receptor on the neutrophil surface through the carboxy terminal of the gamma-chain and that HMWK interferes with the binding of fibrinogen to integrins on both neutrophils and activated platelets.  相似文献   

5.
Kininogens, the high molecular weight precursor of vasoactive kinins, bind to a wide variety of cells in a specific, reversible, and saturable manner. The cell docking sites have been mapped to domains D3 and D5(H) of kininogens; however, the corresponding cellular acceptor sites are not fully established. To characterize the major cell binding sites for kininogens exposed by the endothelial cell line EA.hy926, we digested intact cells with trypsin and other proteases and found a time- and concentration-dependent loss of (125)I-labeled high molecular weight kininogen (H-kininogen) binding capacity (up to 82%), indicating that proteins are crucially involved in kininogen cell attachment. Cell surface digestion with heparinases similarly reduced kininogen binding capacity (up to 78%), and the combined action of heparinases and trypsin almost eliminated kininogen binding (up to 85%), suggesting that proteoglycans of the heparan sulfate type are intimately involved. Consistently, inhibitors such as p-nitrophenyl-beta-d-xylopyranoside and chlorate interfering with heparan sulfate proteoglycan biosynthesis reduced the total number of kininogen binding sites in a time- and concentration-dependent manner (up to 67%). In vitro binding studies demonstrated that biotinylated H-kininogen binds to heparan sulfate glycosaminoglycans via domains D3 and D5(H) and that the presence of Zn(2+) promotes this association. Cloning and over-expression of the major endothelial heparan sulfate-type proteoglycans syndecan-1, syndecan-2, syndecan-4, and glypican in HEK293t cells significantly increased total heparan sulfate at the cell surface and thus the number of kininogen binding sites (up to 3. 3-fold). This gain in kininogen binding capacity was completely abolished by treating transfected cells with heparinases. We conclude that heparan sulfate proteoglycans on the surface of endothelial cells provide a platform for the local accumulation of kininogens on the vascular lining. This accumulation may allow the circumscribed release of short-lived kinins from their precursor molecules in close proximity to their sites of action.  相似文献   

6.
Low molecular weight (LMW) kininogen was isolated from pooled rat plasma by chromatography on DEAE-Sephadex A-50, CM-Sephadex C-50, Blue-Sepharose CL-6B, and Sephadex G-100. It was shown to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoelectrophoresis. The molecular weight of rat LMW kininogen was determined to be 72,000 by SDS-PAGE. The LMW kininogen contained 83.5% protein, 4.0% hexose, 5.5% hexosamine, and 2.7% sialic acid. Kinin liberated from LMW kininogen by trypsin treatment was identified as an Ile-Ser-bradykinin(T-kinin) by analysis involving ion exchange column chromatography on CM-Sephadex C-25 and high performance liquid chromatography on a reverse-phase column (ODS-120T). LMW kininogen formed kinin with rat submaxillary gland kallikrein, but the kinin liberated was only 14% of the total kinin content, that is, that released by trypsin. In order to determine the immunochemical properties of LMW kininogen, specific antiserum was prepared in rabbits. The antiserum cross-reacted with high molecular weight (HMW) kininogen, but spur formation was observed between the LMW and HMW kininogens. The kininogen level in rat plasma was estimated to be 433 microgram/ml by a quantitative single radial immunodiffusion test.  相似文献   

7.
Tryptase, the major neutral protease of human pulmonary mast cell secretory granules, rapidly inactivates human high m.w. kininogen (HMWK) in vitro. HMWK (5600 nM) lost 50% of its capacity to release kinin in response to kallikrein after a 5-min incubation with tryptase (31 nM), even though kinin activity was neither generated nor, when bradykinin was incubated with tryptase, destroyed by tryptase. The procoagulant activity of HMWK (51 nM) and the purified procoagulant chain (40 nM) that is derived from HMWK were each 72% inactivated after 7 min of incubation with tryptase (0.04 nM and 0.02 nM, respectively). Human urinary and pancreatic kallikrein did not inactivate this procoagulant activity under conditions in which kinin generation occurs. Complete cleavage of native single-chain HMWK by tryptase occurred in less than 10 min as analyzed by electrophoresis in sodium dodecyl sulfate polyacrylamide slab gels. The major products formed during the initial 2 min were proteins of 100,000 and 95,000 apparent m.w., and by 10 to 30 min were fragments of 74,000 and 67,000 apparent m.w. Reduction of these cleavage products yielded two major fragments of 67,000 and 66,000 apparent m.w. that were both present by 0.17 min. The presence of lower m.w. products, thought to be primarily from the carboxy-terminal procoagulant region of HMWK, were also detected with and without reduction. The capacity of tryptase to inactivate HMWK is consistent with the ability of other mast cell-derived mediators, such as heparin proteoglycan and prostaglandin D2, to suppress blood coagulation and thrombosis, and may play an important role in the biology of mast cell-dependent events in vivo.  相似文献   

8.
1. High mol. wt kininogen (HMW kininogen) was purified to a homogeneous state from porcine plasma. 2. The protein exhibited a strong inhibitory activity for thiol proteinases such as ficin, papain and calpain I, whereas it did not inhibit serine proteinases, trypsin and chymotrypsin. 3. The mol. wt, isoelectric point, amino acid and carbohydrate compositions, stabilities to temperature and pH, kinetic constants, and immunological properties of the porcine HMW kininogen were determined and compared with those of human HMW kininogen.  相似文献   

9.
The nonenzymatic cofactor high molecular weight kininogen (HK) is a precursor of bradykinin (BK). The production of BK from HK by plasma kallikrein has been implicated in the pathogenesis of inflammation and vascular injury. However, the functional role of HK in the absence of prekallikrein (PK), the proenzyme of plasma kallikrein, on vascular endothelial cells is not fully defined. In addition, no clinical abnormality is seen in PK-deficient patients. Therefore, an investigation into the effect of HK, in the absence of PK, on human pulmonary artery endothelial cell (HPAEC) function was performed. HK caused a marked and dose-dependent increase in the intracellular calcium [Ca(2+)](i) level in HPAEC. Gd(3+) and verapamil potentiated the HK-induced increase in [Ca(2+)](i). HK-induced Ca(2+) increase stimulated endothelial nitric oxide (NO) and prostacyclin (PGI(2)) production. The inhibitors of B(2) receptor-dependent signaling pathway impaired HK-mediated signal transduction in HPAEC. HK had no effect on endothelial permeability at physiological concentration. This study demonstrated that HK regulates endothelial cell function. HK could play an important role in maintaining normal endothelial function and blood flow and serve as a cardioprotective peptide.  相似文献   

10.
11.
Mac-3 is a mouse macrophage differentiation antigen defined by a rat anti-mouse monoclonal antibody (MAb),M3/84. The structure, biosynthesis, quantitative surface expression, and distribution of Mac-3 have been studied by radiolabeling and isolation with MAb-Sepharose, saturation binding, absorption, and immunofluorescence flow cytometry. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Mac-3 migrates as a diffuse band with average Mr = 110,000. Labeling of intact cells with 125I and accessibility to MAb show it is present at least in part on the cell surface. Saturation labeling with 125I-MAb shows 4.2 X 10(4) cell surface sites on thioglycollate medium-elicited peritoneal macrophages. [35S]Methionine and [3H]glucosamine incorporation into Mac-3 by purified macrophages show it is a glycoprotein synthesized by these cells. Absorption shows Mac-3 is strongest in macrophages, present in lower quantities in lung, liver, bone marrow, and spleen, and undetectable in thymus, lymph node, brain, and heart. Immunofluorescent flow cytometry shows surface expression on thioglycollate-elicited macrophages but not bone marrow, spleen, lymph node, or thymus cell suspensions. Similar amounts of Mac-3 are immunoprecipitated from resident macrophages or macrophages elicited by sterile inflammatory agents, intracellular parasites, or immunomodulators, but the average Mr of Mac-3 varies from 92,000 to 110,000. Mac-3 is synthesized from precursor(s) of Mr = 74,000 and 79,000, identical in the different macrophages. Processing into the mature molecule, which migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a more diffuse band and varies in Mr among macrophage elicited by different agents and to a lesser degree between different preparations of the same type of macrophage, occurs in 15 to 30 min.  相似文献   

12.
A low molecular weight (LMW) kininogen was isolated from pooled human serum by chromatography on DEAE-Sephadex A-50, CM-Sephadex C-50, Sephadex G-150, and Sephadex G-100. It was shown to be homogeneous by ultracentrifugation, polyacrylamide gel electrophoresis, and immunoelectrophoresis. The sedimentation coefficient, S020,W, of purified LMW kininogen was 3.85 s, and its molecular weight was determined to be 78,000 by Sephadex G-100 gel-filtration. The LMW kininogen contained 79.3% protein, 8.0% hexose, 3.9% hexosamine, and 4.9% sialic acid. In order to determine the immunochemical properties of LMW kininogen, specific antiserum was prepared in rabbits. The antigenic determinant of LMW kininogen was not related to the sialic acid and kinin moieties in the kininogen molecule, but could not be distinguished from that of high molecular weight (HMW) kininogen. In the quantitative single radial immunodiffusion test, a sialic acid-free LMW kininogen reacted to a greater extent with the antiserum than the native LMW kininogen. The kininogen level in human serum was estimated by single radial immunodiffusion. The antiserum cross-reacted with monkey serum, but not with sera from dogs, rats, and mice, horses, pigs, guinea pigs, oxen, and rabbits.  相似文献   

13.
14.
We previously reported that cleaved high molecular weight kininogen (HKa) and its domain 5 (D5) inhibit critical steps required for angiogenesis and in vivo neovascularization (Colman et al. 2000: Blood 95:543-550). We have further shown that D5 is able to induce apoptosis of endothelial cells, which may represent a critical part of the anti-angiogenic activity of HKa and D5 (Guo et al. 2001: Arterioscler Thromb Vasc Biol 21:1427-1433). In this study, we demonstrate that HKa- and D5-induced apoptosis is closely correlated with their anti-adhesive effect. An important new finding is that the apoptotic activity of HKa and D5 is highly regulated by their interactions with different extracellular matrix (ECM) proteins. HKa inhibited cell adhesion to vitronectin (Vn, 90%) and gelatin (Gel) (40%), but it had no apparent effect on cell adhesion to fibronectin (Fn). D5 showed a similar pattern on cell adhesion but was less potent than HKa. HKa induced apoptosis of endothelial cells grown on Vn and Gel but not cells grown on Fn which closely parallels with its anti-adhesive potency. Further results revealed that the anti-adhesive effect and the apoptotic effect of HKa are associated with its ability to inhibit phosphorylation of focal adhesion kinase (FAK) and paxillin, two important signal molecules required for cell adhesion and cell viability. We conclude that the anti-adhesive activity of HKa and D5 is responsible for their apoptotic effect and that Vn is likely an ECM component that mediates the effect of HKa and D5.  相似文献   

15.
16.
Plasma kallikrein and factor XIa circulate bound to high molecular weight kininogen, and such binding has been reported to protect these enzymes from inactivation by their respective inhibitors. However, this observation is controversial, and the effect of high molecular weight kininogen upon the interaction between kallikrein and C1 inhibitor (C1-INH) has been questioned. We have re-evaluated this reaction and studied the rate of inhibition of kallikrein by C1-INH in the presence and absence of high molecular weight kininogen. The second-order rate constant of inhibition of kallikrein by C1-INH was unaffected by saturating concentrations of high molecular weight kininogen. Our results suggest that although high molecular weight kininogen clearly augments the rate of formation of kallikrein and other enzymes of the contact activation pathway, it has no effect on the rate of enzyme inhibition by C1-INH.  相似文献   

17.
By introduction of stepwise DEAE Sephadex A-50 and copper-Chelating Sepharose 6B column chromatographies, about 18.5 mg of high molecular weight kininogen (HK) composed of a single polypeptide chain was obtained from 500 ml of porcine plasma. Molecular weights of reduced or non-reduced preparation were estimated to be 110 kDa and 116 kDa, respectively, by SDS–PAGE. Using the preparation, cleavage of HK by porcine plasma kallikrein (KK) was investigated. A single polypeptide HK was cleaved into two chains cross-linked by disulfide bond(s), accompanying the release of kinin. Further degradation was not observed. Molecular weights of heavy-chain (H-chain) and light-chain (L-chain) were estimated to be 61 kDa and 56 kDa, respectively, by SDS–PAGE. The amino- (N-) terminal sequences of intact HK, reduced and carboxymethylated- (RCM-) H-chain, RCM-L-chain and the peptide around the kinin moiety obtained by BrCN digestion were determined. Their sequences were highly homologous with those of bovine or human HK. These results indicate that plasma KK first cleaved the Arg-Ser bond of HK, and formed nicked HK. The second cleavage yielded bradykinin (BK) and kinin-free protein, which was apparently of equal size to the nicked HK. The structure of HK was from the N-terminus to the carboxy- (C-) terminus, H-chain-BK-L-chain.  相似文献   

18.
19.
Plasminogen activator inhibitor-1 (PAI-1) and two-chain high molecular weight kininogen (HKa) exert anti-adhesive properties in vitronectin-dependent cell adhesion. Here, the hypothesis was tested that these anti-adhesive components promote apoptosis in vascular cells. PAI-1 or HKa induced a 2- to 3-fold increase in apoptosis of human umbilical-vein endothelial cells (HUVEC) and vascular smooth muscle cells (VSMC) adherent to vitronectin, as determined by annexin V-FACS assay, similar to alphav-integrin inhibitor cyclo-(Arg-Gly-Asp-D-Phe-Val)-peptide (cRGDfV). Apoptosis occurred after 12 h incubation and was attributable to caspase 3 activation that in turn induced DNA fragmentation. Induction of apoptosis strongly correlated with the anti-adhesive effect of PAI-1 and HKa on these cells. In contrast, PAI-1 and HKa did not affect fibronectin-dependent adhesion or cell survival. uPA did not influence apoptosis in vitronectin- or fibronectin-adherent cells. In atherosclerotic vessel sections, congruent distribution of vitronectin, PAI-1, HK, and of components of the urokinase plasminogen activator/receptor system with apoptotic cells lining foam cell lesions was demonstrated by immunostaining. These results indicate that inhibition of vitronectin-dependent cell adhesion through PAI-1 and HKa correlates with apoptosis induction in vascular cells mediated through the caspase 3 pathway. Co-distribution of apoptosis with plasminogen activation system components in atherosclerosis exemplifies the significance of anti-adhesive mechanisms and apoptosis for tissue remodeling, such as in neointima development.  相似文献   

20.
Fibronectin is a polymorphic glycoprotein found in blood and tissues of vertebrates and in cultures of adherent vertebrate cells. There are several forms of fibronectin is composed of two high molecular weight subunits held together by forms found in tissues and on and around the surfaces of cultured cells. Soluble fibronectin is composed of two high molecular weight subunits held together by disulfide bonds. Insoluble fibronectin may be covalently cross-linked in larger complexes. Fibronectin has affinities for collagen, fibrin, heparin, and cell surfaces. in culture, fibronectin in growth medium may mediate attachment of cells to substratum, and fibronectin synthesized by cells may mediate adhesion to substratum. The widespread occurrence of fibronectin in basal lamina indicates that many different cell types in vivo abut against a fibronectin-containing matrix. Cultured transformed cells usually lack cell-surface fibronectin, also called large, external transformation-sensitive (LETS) protein. The failure of transformed cells to synthesize or bind fibronectin is paralleled (at least in some systems) by failures to synthesize or bind collagen and proteoglycans. Abnormal synthesis of fibronectin and other matrix components and abnormal interactions with the tissue matrix may account for several phenotypic characteristics of transformed cultutred cells and for some of the malignant behavior of neoplastic cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号