首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Platelet microparticles (MPs) are membrane vesicles shed by platelets after activation, and carry antigens characteristic of intact platelets, such as glycoprotein (GP) IIb/IIIa, GPIb and P-selectin. Elevated platelet MPs have been observed in many disorders in which platelet activation is documented. Recently, platelet GPIb has been implicated in the mediation of platelet–leukocyte interaction via binding to its ligand Mac-1 on leukocyte. The role of GPIb for mediating adhesion-activation interactions between platelet MPs and leukocytes has not been clarified. In this study we investigate the role of GPIb in the interplay between platelet MPs and neutrophils. Platelet MPs were obtained from collagen-stimulated platelet-rich plasma (PRP). In a study model of neutrophil aggregation, platelet MPs can serve a bridge to support neutrophil aggregation under venous level shear stress, suggesting that platelet MPs may enhance leukocyte aggregation, which would bear clinical relevance in diseases where the platelet MPs are elevated. The level of aggregation can be reduced by GPIb blocking antibodies, AP1 and SZ2, but not by anti-CD18 mAb. The GPIb blocking antibodies also decreased platelet MP-mediated neutrophil activation, including β2 integrin expression, adherence-dependent superoxide release and platelet MP-mediated neutrophil adherence to immobilized fibrinogen. Our data provide the evidence for the involvement of GPIb–Mac-1 interaction in the cross-talk between platelet MPs and neutrophils.  相似文献   

2.
Factor XI (FXI) is a homodimeric plasma zymogen that is cleaved at two internal Arg(369)-Ile(370) bonds by thrombin, factor XIIa, or factor XIa. FXI circulates as a complex with the glycoprotein high molecular weight kininogen (HK). FXI binds to specific sites (K(d) = approximately 10 nM, B(max) = approximately 1,500/platelet) on the surface of stimulated platelets, where it is efficiently activated by thrombin. The FXI Apple 3 (A3) domain mediates binding to platelets in the presence of HK and zinc ions (Zn(2+)) or prothrombin and calcium ions. The platelet glycoprotein (GP) Ib-IX-V complex is the receptor for FXI. Using surface plasmon resonance, we determined that FXI binds specifically to glycocalicin, the extracellular domain of GPIbalpha, in a Zn(2+)-dependent fashion (K(d) = approximately 52 nM). We now show that recombinant FXI A3 domain inhibits FXI inbinding to glycocalicin in the presence of Zn(2+), whereas the recombinant FXI A1, A2, or A4 domains have no effect. Experiments with full-length recombinant FXI mutants show that, in the presence of Zn(2+), glycocalicin binds FXI at a heparin-binding site in A3 (Lys(252) and Lys(253)) and not by amino acids previously shown to be required for platelet binding (Ser(248), Arg(250), Lys(255), Phe(260), and Gln(263)). However, binding in the presence of HK and Zn(2+) requires Ser(248), Arg(250), Lys(255), Phe(260), and GLn(263) and not Lys(252) and Lys(253). Thus, binding of FXI to GPIbalpha is mediated by amino acids in the A3 domain in the presence or absence of HK. This interaction is important for the initiation of the consolidation phase of blood coagulation and the generation of thrombin at sites of platelet thrombus formation.  相似文献   

3.
Zhang J  Ma Z  Dong N  Liu F  Su J  Zhao Y  Shen F  Wang A  Ruan C 《PloS one》2011,6(7):e22157
The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13.  相似文献   

4.
The extracellular region of CD6 consists of three scavenger receptor cysteine-rich (SRCR) domains and binds activated leukocyte cell adhesion molecule (ALCAM), a member of the immunoglobulin superfamily (IgSF). Residues important for the CD6-ALCAM interaction have previously been identified by mutagenesis. A total of 22 CD6 residues were classified according to their importance for anti-CD6 monoclonal antibody (mAb) and/or ALCAM binding. The three-dimensional structure of the SRCR domain of Mac-2 binding protein has recently been determined, providing a structural prototype for the SRCR protein superfamily. This has made a thorough three-dimensional analysis of CD6 mutagenesis and mAb binding experiments possible. Mutation of buried residues compromised both mAb and ALCAM binding, consistent with the presence of structural perturbations. However, several residues whose mutation affected both mAb and ALCAM binding or, alternatively, only ligand binding were found to map to the surface in the same region of the domain. This suggests that the CD6 ligand binding site and epitopes of tested mAbs overlap and provides an explanation for the finding that these mAbs effectively block ALCAM binding. An approximate molecular model of CD6 was used to delineate the ALCAM binding site.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089490050263Abbreviations ALCAM activated leukocyte cell adhesion molecule - CD6D3 third (membrane-proxi-mal) extracellular domain of CD6 - IgSF immunoglobulin superfamily - mAb monoclonal antibody - M2BP Mac-2 binding protein - SRCR scavenger receptor cysteine-rich domain - SRCRSF scavenger receptor cysteine-rich protein superfamily  相似文献   

5.
已有的研究结果表明,肝素可以作为β2-整合素(Mac-1)的配体抑制炎症过程中Mac-1介导的嗜中性粒细胞与血管内皮细胞的黏附.通过选择性化学修饰方法制备了具有低抗凝血活性的高碘酸氧化-硼氢化钠还原肝素(RO-肝素),系统地研究了它对Mac-1介导的嗜中性粒细胞黏附的抑制作用.结果表明,显著失去抗凝血活性的RO-肝素仍能有效地抑制Mac-1介导的嗜中性粒细胞与ICAM-1重组蛋白、转染ICAM-1 cDNA的COS-7细胞和人脐静脉内皮细胞黏附.为深入阐明拮抗Mac-1介导的白细胞黏附的分子机制和筛选抗炎症药物提供了有价值的实验证据.  相似文献   

6.
alpha(M)beta(2) integrin receptors on myeloid cells mediate the adhesion or uptake of diverse ligands. Ligand binding occurs in the alpha(M) chain, which is composed of an I domain and a lectin domain. The alpha(M) I domain binds iC3b, fibrinogen, intercellular adhesion molecule-1, and other ligands and mediates the adhesion of neutrophils to platelet glycoprotein Ibalpha (GPIbalpha). alpha(M)beta(2) also recognizes beta-GlcNAc residues on GPIbalpha that are clustered on platelets after cooling. The phagocytosis of chilled platelets could be reconstituted when Chinese hamster ovary cells were transfected with alpha(M)beta(2). Replacement of the I domain or the lectin domain of the alpha(M) chain with the corresponding domain from the alpha(X) chain (p150) revealed that the activity of the alpha(M)beta(2) integrin toward chilled platelets resides within the lectin domain and does not require the I domain. Additional evidences for this conclusion are: 1) Sf9 cells expressing solely the alpha(M) lectin domain bound chilled platelets, and 2) soluble recombinant alpha(M) lectin domain inhibited the phagocytosis of chilled platelets by alpha(M)beta(2)-expressing THP-1 cells, whereas I domain substrates showed no inhibitory effect. Therefore chilled platelets are removed from blood by an interaction between beta-GlcNAc residues on clustered GPIbalpha and the lectin domain of alpha(M) chain of the alpha(M)beta(2) integrin, distinguishing this interaction from those mediated by the alpha(M) I domain.  相似文献   

7.
The lymphatic circulation mediates drainage of fluid and cells from the periphery through lymph nodes, facilitating immune detection of lymph-borne foreign Ags. The 10.1.1 mAb recognizes a lymphatic endothelial Ag, in this study purified by Ab-affinity chromatography. SDS-PAGE and mass spectrometry identified murine chloride channel calcium-activated 1 (mCLCA1) as the 10.1.1 Ag, a 90-kDa cell-surface protein expressed in lymphatic endothelium and stromal cells of spleen and thymus. The 10.1.1 Ab-affinity chromatography also purified LFA-1, an integrin that mediates leukocyte adhesion to endothelium. This mCLCA1-LFA-1 interaction has functional consequences, as lymphocyte adhesion to lymphatic endothelium was blocked by 10.1.1 Ab bound to endotheliumor by LFA-1 Ab bound to lymphocytes. Lymphocyte adhesion was increased by cytokine treatment of lymphatic endothelium in association with increased expression of ICAM-1, an endothelial surface protein that is also a ligand for LFA-1. By contrast, mCLCA1 expression and the relative contribution of mCLCA1 to lymphocyte adhesion were unaffected by cytokine activation, demonstrating that mCLCA1 and ICAM-1 interactions with LFA-1 are differentially regulated. mCLCA1 also bound to the LFA-1-related Mac-1 integrin that is preferentially expressed on leukocytes. mCLCA1-mediated adhesion of Mac-1- or LFA-1-expressing leukocytes to lymphatic vessels and lymph node lymphatic sinuses provides a target for investigation of lymphatic involvement in leukocyte adhesion and trafficking during the immune response.  相似文献   

8.
9.
P-selectin (CD62P) is a cell adhesion molecule expressed on stimulated endothelial cells and on activated platelets. It interacts with PSGL-1 (P-selectin glycoprotein ligand-1; CD162) on leukocytes and mediates recruitment of leukocytes during inflammation. P-selectin also binds to several types of cancer cells in vitro and facilitates growth and metastasis of colon carcinoma in vivo. Here we show that P-selectin, but not E-selectin, binds to NCI-H345 cells, a cell line derived from a human small cell lung cancer. EDTA or P7 (a leukocyte adhesion blocking mAb to P-selectin), but not PL5 (a leukocyte adhesion blocking mAb to PSGL-1), can inhibit this binding. P-selectin affinity chromatography can precipitate a approximately 110-kDa major band and a approximately 220-kDa minor band from [3H]-glucosamine-labeled NCI-H345 cells. No expression of PSGL-1 protein and mRNA can be detected in NCI-H345 cells. Taken together, these results suggest that NCI-H345 cells express glycoprotein ligands for P-selectin that are distinct from leukocyte PSGL-1.  相似文献   

10.
Platelet glycoprotein (GP) Ibalpha is a component of the GPIb-IX receptor complex, which is involved in multiple physiological and pathological processes, including platelet adhesion at sites of vascular injury, thrombin binding, Bernard-Soulier syndrome, platelet-type von Willebrand disease, and immune-mediated thrombocytopenias. The amino-terminal domain of approximately 300 residues of GPIbalpha mediates both normal biological function (by providing the sites for direct ligand interaction) and aberrant function (through amino acid substitutions). To investigate the molecular interactions mediated by this region of GPIbalpha, we have developed a recombinant baculovirus to facilitate its expression as a calmodulin fusion protein from insect cells. By employing the calmodulin tag, the fusion protein could be obtained at >90% purity after a single isolation step at yields of 8 mg/L of insect cell medium (purified fusion protein). The recombinant GPIbalpha fragment was shown to be posttranslationally sulfated and glycosylated, although its glycosylation differed from that of the equivalent GPIbalpha fragment isolated from human platelets. The differential glycosylation, however, did not affect the function of the recombinant GPIbalpha fragment in either von Willebrand factor (vWf) or thrombin binding as these were both found to be identical to those of the same-length GPIbalpha fragment derived from human platelets. The calmodulin tag was also exploited in the development of assays to measure directly vWf and thrombin binding, since it did not interfere with either, demonstrating the feasibility for the use of this soluble receptor fusion protein in detailed biophysical assays to investigate the molecular mode of binding of platelet glycoprotein Ibalpha to these ligands.  相似文献   

11.
Leukocyte recruitment in response to inflammatory signals is in part governed by interactions between endothelial cell receptors belonging to the Ig superfamily and leukocyte integrins. In our previous work, the human Ig superfamily glycoprotein Thy-1 (CD90) was identified as an activation-associated cell adhesion molecule on human dermal microvascular endothelial cells. Furthermore, the interaction of Thy-1 with a corresponding ligand on monocytes and polymorphonuclear cells was shown to be involved in the adhesion of these leukocytes to activated Thy-1-expressing endothelial cells. In this study, we have identified the specific interaction between human Thy-1 and the leukocyte integrin Mac-1 (CD11b/CD18; alphaMbeta2) both in cellular systems and in purified form. Monocytes and polymorphonuclear cells were shown to adhere to transfectants expressing human Thy-1 as well as to primary Thy-1-expressing human dermal microvascular endothelial cells. Furthermore, leukocyte adhesion to activated endothelium as well as the subsequent transendothelial migration was mediated by the interaction between Thy-1 and Mac-1. This additional pathway in leukocyte-endothelium interaction may play an important role in the regulation of leukocyte recruitment to sites of inflammation.  相似文献   

12.
Leukocyte recruitment from blood to inflammatory sites occurs in a multistep process that involves discrete molecular interactions between circulating and endothelial cells. Junctional adhesion molecule (JAM)-C is expressed at different levels on endothelial cells of lymphoid organs and peripheral tissues and has been proposed to regulate neutrophil migration by its interaction with the leukocyte integrin Mac-1. In the present study, we show that the accumulation of leukocytes in alveoli during acute pulmonary inflammation in mice is partially blocked using neutralizing Abs against JAM-C. To confirm the function of JAM-C in regulating leukocyte migration in vivo, we then generated a strain of transgenic mice overexpressing JAM-C under the control of the endothelial specific promotor Tie2. The transgenic animals accumulate more leukocytes to inflammatory sites compared with littermate control mice. Intravital microscopy shows that this is the result of increased leukocyte adhesion and transmigration, whereas rolling of leukocytes is not significantly affected in transgenic mice compared with littermates. Thus, JAM-C participates in the later steps of the leukoendothelial adhesion cascade.  相似文献   

13.
The interaction of the glycoprotein (GP) Ib-V-IX receptor complex with the membrane skeleton of platelets is dependent on a specific interaction between the cytoplasmic tail of GPIbalpha and filamin-1. This interaction has been proposed to regulate key aspects of platelet function, including the ligand binding of GPIb-V-IX and the ability of the cells to sustain adhesion to von Willebrand factor (vWf) under high shear. In this study we have examined sequences in the GPIbalpha intracellular domain necessary for interaction of the receptor with filamin-1. We have identified two adjacent sequences involving amino acids 557-568 and 569-579 of the GPIbalpha cytoplasmic domain that are critical for normal association between the receptor complex and filamin-1. Under flow conditions, Chinese hamster ovary (CHO) cells expressing these two mutant receptors exhibited an increase in translocation velocity that was associated with increased cell detachment from the vWf matrix at high shear. The shear-dependent acceleration in velocity of mutant Delta557-568 and Delta569-579 CHO cells was associated with a critical defect in receptor anchorage, evident from significant extraction of GPIb-IX from the CHO cell membrane at high shear. These studies define a critical role for amino acids within the 557-579 sequence of GPIbalpha for interaction with filamin-1.  相似文献   

14.
Proteolytic cleavage of single chain high molecular weight kininogen (HK) by kallikrein releases the short-lived vasodilator bradykinin and leaves behind two-chain high molecular weight kininogen (HKa). HKa and particularly its His-Gly-Lys-rich domain 5 have been previously reported to exert anti-adhesive properties by binding to the extracellular matrix protein vitronectin (VN). In this study the ability of HKa and domain 5 to interfere with platelet adhesion and aggregation was investigated. In a purified system HKa and particularly domain 5 but not HK inhibited the binding of VN to the alpha(IIb)beta(3) integrin, whereas the binding of fibrinogen to this integrin was not affected. The region Gly-486-Lys-502 from the carboxyl terminus of the domain 5 was identified as responsible for inhibition of the VN-alpha(IIb)beta(3)-integrin interaction, as this portion was also found to mediate kininogen binding to VN. Through these interactions, HKa, the isolated domain 5, and the peptide Gly-486-Lys-502 abrogated the alpha(IIb)beta(3)-integrin-dependent adhesion of human platelets to VN but not to fibrinogen. The codistribution of VN and HKa at sites of ex vivo platelet aggregation was demonstrated by transmission immune electron microscopy, indicating that the described interaction is likely to take place in vivo. Moreover, domain 5 and the peptide Gly-486-Lys-502 dose-dependently blocked platelet aggregation, resembling the inhibitory effect of monoclonal antibody 13H1 against multimeric VN. Finally, treatment of mice with isolated domain 5 resulted in a significantly prolonged tail bleeding time. Taken together, our data emphasize the inhibitory role of HK domain 5 on platelet adhesion and aggregation; new anti-thrombotic compounds may become available on the basis of peptide Gly-486-Lys-502 of HK domain 5.  相似文献   

15.
HK1.4 mAb was identified based on its ability to stimulate proliferation of cloned murine CTL. Within the lymphoid lineage, mAb HK1.4 bound exclusively to CTL, regardless of the expression of Lyt-2 or MHC restriction. HK1.4 mAb also bound to 40% of bone marrow cells and less than 5% of thymocytes from all mouse strains tested. Based on the tissue distribution of the determinant with which it reacted and the ability to cross-block binding of the anti-Ly-6 mAb H9/25, mAb HK1.4 appeared to react with a product of the Ly-6 locus. However, significant differences were observed between the properties of mAb HK1.4 and other, previously described anti-Ly-6 mAb. Cell proliferation and lymphokine release by cloned CTL were stimulated by culture with mAb HK1.4 alone or in the presence of non-stimulatory levels of IL-2. This proliferation and lymphokine release were not blocked by the addition of soluble anti-Lyt-2 or anti-IL-2R mAb. Activation induced by HK1.4 mAb proceeds in the absence of accessory cells, of cross-linking of the TCR, or the addition of mitogens or PMA. Stimulation of cells by anti-TCR mAb was not blocked by the addition of soluble HK1.4 mAb, and the stimulatory effects of HK1.4 and anti-TCR mAb were not additive. However, IL-2-driven proliferation of CTL clones was dramatically inhibited by the addition of HK1.4 mAb.HK1.4 mAb had no effect on Ag-specific or lectin-facilitated cytolysis. Taken together, these data indicate that mAb HK1.4 operates via an IL-2-independent pathway of activation that is also independent of the TCR.  相似文献   

16.
To evaluate the immunological functions of the greater omentum in the peritoneal cavity, the localization of cell adhesion molecules (CAMs) on mesothelial cells and leukocytes in the omental milky spots were studied in normal and lipopolysaccharide (LPS)-stimulated mice by means of immunoelectron microscopy. The milky spots featured numerous leukocytes among the dome-shaped mesothelial cells, even in the normal stable state. Leukocyte integrins LFA-1, Mac-1, and VLA-4 were preferentially localized to microvilli and ruffles of macrophages and lymphocytes. The mesothelial cells of the milky spots showed higher ICAM-1 levels than did those of other omental regions, and fibronectin was detected in the stomata. The number of leukocytes markedly increased following an increase in proliferating cell nuclear antigen (PCNA)-positive cells in the milky spots after LPS stimulation. The mesothelial cells contained VCAM-1 newly restricted to the microvilli and increasing amounts of ICAM-1. These results show that the omental milky spots are active sites for leukocyte migration and peritoneal leukocyte supply because of the presence of adhesion molecules and active cell proliferation. Proliferative active leukocytes and those that have migrated from vessels pass through the stomata via an interaction of VLA-4 and fibronectin, adhere to the microvilli of the activated mesothelial cell surface as the result of an interaction between ICAM-1/VCAM-1 and integrins, and exude into the peritoneal cavity. Much of the exudation and adhesion of leukocytes seen in the milky spots of LPS-stimulated mice may be attributable to an increase in cell proliferation and in the amounts of ICAM-1 and VCAM-1.  相似文献   

17.
High‐molecular‐weight kininogen domain 5 (HK5) is an angiogenic modulator that is capable of inhibiting endothelial cell proliferation, migration, adhesion, and tube formation. Ferritin can bind to a histidine–glycine–lysine‐rich region within HK5 and block its antiangiogenic effects. However, the molecular intricacies of this interaction are not well understood. Analysis of the structure of HK5 using circular dichroism and nuclear magnetic resonance [1H, 15N]‐heteronuclear single quantum coherence determined that HK5 is an intrinsically unstructured protein, consistent with secondary structure predictions. Equilibrium binding studies using fluorescence anisotropy were used to study the interaction between ferritin and HK5. The interaction between the two proteins is mediated by metal ions such as Co2+, Cd2+, and Fe2+. This metal‐mediated interaction works independently of the loaded ferrihydrite core of ferritin and is demonstrated to be a surface interaction. Ferritin H and L bind to HK5 with similar affinity in the presence of metals. The ferritin interaction with HK5 is the first biological function shown to occur on the surface of ferritin using its surface‐bound metals.  相似文献   

18.
The leukocyte adhesion molecule-1 (LAM-1, TQ=1, Leu-8) in humans, like its murine homologue, MEL-14, is the principal receptor that mediates the binding of leukocytes to high endothelial venules (HEV) of peripheral lymph nodes. In this study, several regions of the protein which mediate receptor function were identified by using a large panel of murine mAb reactive with LAM-1. Individual mAb reacted with LAM-1+ cells with characteristic intensities of immunofluorescence staining, and each bound both lymphocytes and neutrophils. Lymphocyte attachment to HEV was significantly inhibited by the binding of five mAb. In contrast, only two of these mAb were able to completely block the binding of phosphomannan monoester core complex from the yeast Hansenula holstii cell wall (PPME), a phosphomannan monoester core polysaccharide that serves as a soluble model of the natural ligand of LAM-1. Interestingly, the binding of two anti-LAM-1 mAb to cells induced a significant increase in PPME binding, reminiscent of the increase in receptor affinity observed after leukocyte activation. Antibody cross-blocking studies indicated that many of the functionally important epitopes were spatially distinct, and domain mapping indicated that they recognized distinct domains of LAM-1. The expression and function of these epitopes were further assessed by using a variety of animal species to further characterize the functionally relevant epitopes defined in these studies. At least some anti-LAM-1 mAb reacted with leukocytes from monkey, cow, rabbit, sheep, dog, cat, pig, and goat, but not from chicken, rat, or mouse. The reactivity of anti-LAM-1 mAb in several animal species correlated with the ability of leukocytes to bind PPME, and mAb that inhibited lymphocyte binding to HEV in man could also inhibit this function in rhesus monkey and dog. Thus, several LAM-1 epitopes are structurally and functionally well conserved throughout recent mammalian evolution, emphasizing an important role for LAM-1 in the regulation of leukocyte traffic.  相似文献   

19.
We report that a subpopulation (10%) of the Mac-1 (CD1 1b/CD18) molecules on activated neutrophils mediates adhesion to ICAM-1 and fibrinogen. We describe a novel mAb (CBRM1/5) that binds to an activation-specific neoepitope on a subset of Mac-1 molecules on neutrophils and monocytes after stimulation with chemoattractants or phorobol esters but does not recognize Mac-1 on resting myeloid cells. CBRM1/5 immunoprecipitates a subpopulation of Mac-1 molecules from detergent lysates of neutrophils, binds to immunoaffinity-purified Mac- 1, and localizes to the I domain on the alpha chain of Mac-1. Because CBRM1/5 recognizes a fraction of Mac-1 on activated neutrophils, but still blocks Mac-1-dependent adhesion to fibrinogen and ICAM-1, we suggest that only a small subset of Mac-1 molecules is competent to mediate adhesion.  相似文献   

20.
Mitogenesis, cellular aggregation, and motility follow upon the interaction of fibrinogen with certain defined cell surface receptors. In addition to circulating platelets and vascular endothelium, monocytes express what appears to be a receptor for fibrinogen. Evidence is presented here that the leukocyte adhesion receptor Mac-1 can be specifically induced to bind fibrinogen with characteristics immunochemically and functionally distinct from the established Arg-Gly-Asp-directed fibrinogen receptors. The competence of Mac-1 as a fibrinogen receptor is a general property of cells of monocyte and myeloid lineage acquired after maturational changes of some regions of the alpha subunit of Mac-1 during the process of cell differentiation. This ligand recognition specificity of Mac-1 is lacking for the resting cell. Rather, induction of fibrinogen binding capacity of Mac-1 is due to a cellular response to selected agonists characterized by inducing rapid transients of cytosolic Ca2+. Although different in activation pathways and recognition specificity, Mac-1 exhibits an oligospecific ligand versatility characteristic of other homologous Arg-Gly-Asp-directed adhesion receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号