首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GTP-binding proteins on luminal and basolateral membrane vesicles from outer cortex (pars convoluta) and outer medulla (pars recta) of rabbit proximal tubule have been examined. The membrane vesicles were highly purified, as ascertained by electron microscopy, by measurements of marker enzymes, and by investigating segmental-specific transport systems. The [35S]GTP gamma S binding to vesicles, and to sodium cholate-extracted proteins from vesicles, indicated that the total content of GTP-binding proteins were equally distributed on pars convoluta, pars recta luminal and basolateral membranes. The membranes were ADP-ribosylated with [32P]NAD+ in the presence of pertussis toxin and cholera toxin. Gel electrophoresis revealed, for all preparations, the presence of cholera toxin [32P]ADP-ribosylated 42 and 45 kDa G alpha s proteins, and pertussis toxin [32P]ADP-ribosylated 41 kDa G alpha i1, 40 kDa G alpha i2 and 41 kDa G alpha i3 proteins. The 2D electrophoresis indicated that Go's were not present in luminal nor in basolateral membranes of pars convoluta or pars recta of rabbit proximal tubule.  相似文献   

2.
Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.  相似文献   

3.
We report the existence of several families of GTP-binding proteins in plasma membranes of Metarhizium anisopliae. Two proteins (18.4 and 24 kDa) resemble mammalian Gn-proteins in their being toxin insensitive, binding [alpha-32P]GTP on nitrocellulose blots of sodium dodecyl sulfate (SDS)-polyacrylamide gels, and also in their immunological properties. Four other proteins (31-38.2 kDa) were similar except that they did not bind [alpha-32P]GTP after treatment with sodium dodecyl sulfate. An 18.2 kDa cholera toxin substrate and three toxin insensitive bands (18.6, 18.8, and 24 kDa) are novel proteins antigenically related both to mammalian G-proteins and ras gene products. An additional 23 kDa pertussis toxin substrate (the major G-protein in a crude mycelial extract) reacted strongly with antisera to G-proteins but not with anti-ras serum. Other substrates ADP ribosylated by cholera toxin or botulinum D toxin were immunologically unreactive. Analysis of the structural and functional characteristics of these multiple GTP-binding proteins will promote a better understanding of signal transduction in fungi.  相似文献   

4.
Three GTP-binding proteins of 50 kDa, 45 kDa and 28 kDa were identified by photoaffinity labelling with [gamma-32P]GTP-gamma-azidoanilide (A-GTP) in the rat liver plasma membrane. Pertussis toxin catalysed ADP-ribosylation of a single protein of 40 kDa. A-GTP had no effect on the basal labeling by pertussis toxin. After u.v. irradiation of the membrane in the presence of A-GTP, the GTP-dependent ADP-ribosylation by cholera toxin was increased, while the basal labelling was not affected. These results suggest that A-GTP interacts specifically with the activatory GTP-binding protein (Gs) and does not interact with the inhibitory GTP-binding protein (Gi). The effects of partial photoinactivation of Gs of the rat liver plasma membrane adenylate cyclase system by A-GTP were studied. U.v. irradiation in the presence of increasing concentrations of the analogue caused progressive decrease in the maximal extent of activation by guanosine 5'-[gamma-thio]triphosphate, but the Ka was not affected. The rate of activation of liver adenylate cyclase by guanosine 5'-[gamma-thio]triphosphate is temperature-dependent. The lag time increased from 0.5 min at 30 degrees C to 2.0-2.5 min at 15 degrees C in the presence of 10 microM-guanosine 5'-[gamma-thio]triphosphate. However, Ka remains unaffected by lowering the temperature. Photoinactivation by A-GTP or competitive inhibition by guanosine 5'-[beta-thio]diphosphate decreases the maximal extent of activation by guanosine 5'-[gamma-thio] triphosphate, but the lag time remains unaffected. The present results support the idea that Gs is tightly associated with the catalytic subunit under basal conditions. The present results also indicate that the transition of an inactive Gs to its active form is the rate-limiting step of the activation of adenylate cyclase by guanosine 5'-[gamma-thio]triphosphate in the intact rat liver plasma membranes.  相似文献   

5.
Interaction of small G proteins with photoexcited rhodopsin   总被引:1,自引:0,他引:1  
Bovine rod outer segment (ROS) membranes contain in addition to the heterotrimeric G protein transducin, several small GTP-binding proteins (23-27 kDa). Furthermore, these membranes contain two substrate proteins (about 22 and 24 kDa) for botulinum C3 ADP-ribosyltransferase known to ADP-ribosylate small G proteins in any mammalian cell type studied so far. Most interestingly, [32P]ADP-ribosylation of ROS membrane small G proteins by C3 is regulated by light and guanine nucleotides in a manner similar to pertussis toxin-catalyzed [32P]ADP-ribosylation of the alpha-subunit of transducin. These findings suggest that not only the heterotrimeric G protein transducin but also the C3 substrate small G proteins present in ROS membranes interact with photoexcited rhodopsin and thus contribute to its signalling action.  相似文献   

6.
We have isolated the major GTP-binding proteins from myeloid HL-60 cell plasma membranes. Two pertussis toxin substrates with similar apparent molecular masses of 40 and 41 kDa, respectively, are contained in these preparations, with both proteins being ADP-ribosylated to a similar extent. Partial chymotryptic proteolysis of fractions containing the [32P]ADP-ribosylated 40-kDa GTP-binding protein alpha subunit demonstrated production of 32P-labeled peptides of 28 and 16 kDa which were not observed after partial proteolysis of fractions containing solely the 41-kDa protein. Similarly, mild acid hydrolysis produced an additional 28-kDa fragment only from fractions containing the 40-kDa protein. The results presented here indicate the presence of two distinct pertussis toxin substrates in myeloid cells. The 41-kDa pertussis toxin substrate is likely to represent the alpha subunit of the inhibitory GTP-binding regulatory protein of adenylate cyclase, whereas the 40-kDa substrate may represent the alpha subunit of the GTP-binding protein which is coupled to chemoattractant receptors. In addition to the pertussis toxin substrates, an additional major peak of guanosine 5'-(3-O-thio)triphosphate-binding activity closely corresponded to the appearance of a 23-kDa protein.  相似文献   

7.
The presence of specific guanine nucleotide-binding proteins in a zucchini (Cucurbita pepo L.) hypocotyl microsomal fraction was investigated. Polypeptides were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and transferred to nitrocellulose. Incubation of nitrocellulose blots with [alpha-32P]GTP and [gamma-32P]GTP indicated the presence of four specific and distinct GTP-binding proteins with molecular masses of approx. 23.4 kDa, 24.8 kDa, 26.6 kDa and 28.5 kDa. Binding of [alpha-32P]GTP could be completely prevented by 30 microM GDP or 10 microM guanosine 5'[gamma-thio]triphosphate. This report presents evidence for the presence in a microsomal fraction from zucchini hypocotyls of Gn-proteins as defined by Bhullar and Haslam (1987) Biochem.J. 245, 617-620. The four plant proteins resemble animal Gn-proteins when molecular weights and GTP-binding specificities are considered.  相似文献   

8.
GTP-binding proteins were studied in synaptic vesicles prepared from bovine brain by differential centrifugation and separated further from plasma membranes using gel permeation chromatography. Following separation by SDS-PAGE of proteins from the different fractions, and transfer to nitrocellulose sheets, the presence and localization of low-molecular-mass GTP-binding proteins were assessed by [alpha-32 P]GTP binding. The vesicle-membrane fraction (SV) was enriched in synaptophysin (p38, a synaptic vesicle marker) and contained low-molecular-mass GTP-binding proteins; these consisted of a major 27 kDa protein and minor components (Mr 26 and 24 kDa) which were trypsin-sensitive and immunologically distinguishable from ras p21 protein. GTP-binding proteins of low molecular mass, but displaying less sensitivity to trypsin, were also found in the plasma membrane fraction (PM; enriched in Na+/K(+)-ATPase). In addition, the PM fraction contained GTP-binding proteins with higher Mr (Gi alpha and G0 alpha), together with another GTP-binding protein, ras p21. Putative function(s) of these GTP-binding proteins with low mass are discussed.  相似文献   

9.
Noradrenaline (NA) stimulated the release of arachidonic acid (AA) from the [3H]AA-labelled rabbit platelets via alpha 2-adrenergic receptors, since the effect of NA was inhibited by yohimbine. The stimulatory effect of NA in digitonin-permeabilized platelets was completely dependent on the simultaneous presence of GTP and Ca2+. The NA- and thrombin-stimulated releases of AA were markedly decreased by the prior ADP-ribosylation of the permeabilized platelets with pertussis toxin. Antiserum directed against the pig brain Go (a GTP-binding protein of unknown function), recognizing both alpha 39 and beta 35,36 subunits, but not alpha 41, of pig brain, reacted with 41 kDa and 40 kDa bands, with not one of 39 kDa, in rabbit platelet membranes. Anti-Go antiserum inhibited guanosine 5'-[gamma-thio]triphosphate-, A1F4(-)-, NA- and thrombin-stimulated AA releases in the membranes. Although the effect of thrombin was inhibited by low concentrations of anti-Go antiserum, high concentrations of the antiserum was needed for inhibition of the NA effect. Antiserum directed against the pig brain G1 (inhibitory G-protein), recognizing both alpha 41 and beta 35,36 subunits, but not alpha 39, of pig brain, reacted with the 41 kDa band in platelets. Anti-G1 antiserum inhibited only the effect of NA. Reconstitution of the platelet membranes ADP-ribosylated by pertussis toxin with Go, not Gi, purified from pig brain restored the thrombin-stimulated release of AA. In contrast, reconstitution of those membranes with Gi, not Go, restored the NA-stimulated release of AA. These results indicate that different GTP-binding proteins, Gi- and Go-like proteins, may be involved in the mechanism of signal transduction from alpha 2-adrenergic receptors and thrombin receptors to phospholipase A2 in rabbit platelets.  相似文献   

10.
Recently we demonstrated the presence in calf thymocytes of a GTP-binding protein (G-protein) composed of three polypeptides, 54, 41, and 27 kDa, which was physically and functionally associated with a soluble phosphoinositides-specific phospholipase C (PI-phospholipase C). The properties of this G protein were further investigated with the following results. 1) In addition to the ability to bind [35S]guanosine-5'-[gamma-thio]triphosphate (GTP gamma S), the G-protein exhibited GTPase activity, which was enhanced by Mg2+, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol, but inhibited by sodium cholate, GTP gamma S and F-.2) The 54-kDa polypeptide was ADP-ribosylated by pertussis toxin and also by endogenous membrane-bound ADP-ribosyltransferase, but none of these three polypeptides was ADP-ribosylated by cholera toxin. 3) The G-protein did not cross-react with either anti-rat brain alpha 1 (alpha-subunit of inhibitory G-protein, G1), alpha 0 (alpha-subunit of other G1-like G-protein, G0) or beta gamma antibodies. 4) Incubation of this G Protein with GTP gamma S caused dissociation of the three polypeptides. 5) The 27 kDa polypeptide showed GTP-binding activity and enhanced the phosphatidylinositol 4,5-bisphosphate hydrolysis by purified PI-phospholipase C. These results suggest that the PI-phospholipase C-associated G-protein in calf thymocytes may be a novel one and that it is involved in the regulation of PI-phospholipase C activity.  相似文献   

11.
To examine whether GTP-binding proteins (G proteins) mediate the ability of neurotensin to lower the affinity of dopamine D2 agonist binding, the modulation by neurotensin in vitro of N-[3H]propylnorapomorphine [( 3H]-NPA) binding was investigated following pretreatment with pertussis toxin and N-ethylmaleimide in rat neostriatal membranes. Preincubation with N-ethylmaleimide (100 microM) markedly inhibited pertussis toxin-induced back-ADP ribosylation of three proteins with apparent molecular masses of 41, 40, and 39 kDa, respectively. This inhibition was prevented by adding dithiothreitol (250 microM) during the preincubation. N-Ethylmaleimide increased the KD (180 +/- 30%) and decreased the Bmax (-31 +/- 9%) of [3H]NPA binding sites but did not affect the binding properties of the selective D2 antagonist [3H]raclopride. N-Ethylmaleimide pretreatment did not affect the neurotensin (3 nM)-induced increase in the KD of [3H]NPA binding sites. Pertussin toxin treatment in vivo and in vitro was similarly ineffective. In conclusion, the present study indicates that neurotensin modulation of D2 agonist binding in neostriatal membranes is not mediated by G proteins.  相似文献   

12.
L C Romero  B Biswal  P S Song 《FEBS letters》1991,282(2):347-350
We have studied the phosphorylation/dephosphorylation of several nuclear proteins in isolated nuclei from etiolated Avena seedlings as a function of red/far-red light. The effect of stimulatory (ADP-ribosylation by cholera toxin) or inhibitory (GDP beta S) conditions for GTP-binding proteins was also studied. Red or far-red light enhanced the phosphorylation level of 2 nuclear proteins with molecular masses of 75 and 60 kDa. The phosphorylation pattern was affected by the addition of cholera toxin or GDP beta S to the isolated nuclei. At least 2 proteins with molecular masses of 24 and 75 kDa cross-reacted by Western blot with GTP-binding protein antibodies.  相似文献   

13.
A major 27 kDa particulate and a minor 24 kDa cytosolic GTP-binding protein was detected in HEL cells upon incubation with [-32P]GTP of nitrocellulose blots containing polypeptides separated using SDS-PAGE. Addition of lovastatin (30 M) to HEL cells in culture inhibited protein synthesis by 35%. However, this treatment resulted in a 5-fold increase, as quantitated by [-32P]GTP binding, in the amount of cytosolic 24 kDa GTP-binding protein. Addition of cycloheximide plus lovastatin to cells in culture abolished the observed increase in 24 kDa GTP-binding protein. Incubation of cells with lovastatin plus [R,S]-[5-3H]mevalonolactone resulted in the incorporation of radioactivity into several polypeptides in both the cytosolic and particulate fractions including a polypeptide of molecular mass of 24 kDa in the cytosol. The mobility of this 24 kDa isoprenylated protein on SDS-PAGE was identical to that of the GTP-binding protein increased in response to lovastatin. However, the 24 kDa protein remained in the cytosol after undergoing isoprenylation. The 24 kDa protein was distinct from the HEL cell, G25K/CDC42Hs GTP-binding protein and the GTP-binding protein that was a substrate for botulinum toxin C3 catalyzed ADP-ribosylation. Results demonstrate that lovastatin specifically increases the expression of a 24 kDa GTP-binding protein in HEL cells and that, isoprenylation of low molecular mass GTP-binding protein(s) may have function(s) in addition to its role in the targetting of these proteins to cell membrane.  相似文献   

14.
Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. [35S]GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of [35S]GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin.  相似文献   

15.
The ontogenesis of alpha 2-adrenoceptors and GTP-binding proteins and their coupling activity were investigated in telencephalon membranes of developing rats. The manganese-induced elevation of [3H]clonidine binding was increased in an age-dependent manner but the guanosine 5'-O-(3-thio)triphosphate-induced decrease in binding did not change. The extent of the binding of [3H]clonidine at 15 nM (saturable concentration) increased in an age-dependent manner and reached the adult level at 4 days after birth. Cholera toxin and pertussis toxin catalyzed ADP-ribosylation of proteins of 46 and 41/39 kilodaltons (kDa) in solubilized cholate extracts of the membranes. The 41/39-kDa proteins ADP-ribosylated by pertussis toxin (Gi alpha + Go alpha) were increased with age and reached the adult level at day 12, whereas the 46-kDa protein (Gs alpha) reached its peak on day 12 and then decreased to the fetal level at the adult stage. The immunoblot experiments of the homogenates with antiserum (specific antibody against alpha- and beta-subunit of GTP-binding proteins) demonstrated that the 39-kDa alpha-subunit of (Go alpha) and the 36-kDa beta-subunit of GTP-binding protein (beta 36) increased with postnatal age. In contrast, 35-kDa beta-subunit (beta 35) did not change. From these results, it is suggested that the coupling activity of alpha 2-adrenoceptor with GTP-binding protein gradually develops in a manner parallel with the increase of alpha 2-adrenoceptor and pertussis toxin sensitive GTP-binding proteins, Gi, and that alpha 39 beta 36 gamma may be related to the differentiation and/or growth of nerve cells in rat telencephalon.  相似文献   

16.
Biochemical analysis revealed the presence of GTP-binding proteins (G-proteins) in Catharanthus roseus hairy root cultures. In a microsomal fraction, several proteins, with molecular masses of 17, 21, 38, 42, 65, and 79 kDa were substrates for ADP-ribosylation by cholera toxin. Antisera raised against a conserved amino-acid sequence (GTSNSGKSTIVKQMK) of mammalian G α subunits recognized three proteins of 42, 50, and 79 kDa. Incubation of nitrocellulose blots with [ α -32P]-GTP also indicated the presence of several proteins (17, 21, 50, and 79 kDa) that could bind GTP. In this system, we previously identified a phosphatidylinositol 4,5-bisphosphate-phospholipase C (PLC, EC 3.1.4.11) activity. As the activation of PLC by G-proteins was described, we decided to see whether, in our system, G-protein activators, such as guanosine 5- o -(3-thiotriphosphate) (GTP Γ S) and sodium fluoride ions, were able to regulate PLC activity in C. roseus transformed roots. Our results show that these agents regulated PLC activity in an inhibitory fashion and that this effect is dose-dependent. GTP was ineffective in producing either stimulation or inhibition of PLC activity. Our results demonstrate that non-hydrolyzable guanine nucleotides and fluoride ions exert an inhibitory effect on membrane PLC activity. In summary, a set of proteins of 17, 21, 38, 42, 50, and 79 kDa present in C. roseus transformed roots possessed at least two of the three main characteristics of a GTP-binding protein, and one of these proteins may be involved in the regulation of PLC activity in C. roseus transformed roots.  相似文献   

17.
GTP-binding proteins were detected in a crude extract containing membrane components of Anabaena cylindrica. The crude extract was treated with 1% Lubrol PX and was fractionated by gel filtration. The binding of [35S]GTP gamma S to GTP-binding proteins was prevented in the presence of 0.1 mM GTP and in the presence of 0.1 mM ATP. Six fractions of these GTP-binding proteins, tentatively designated GA1 to GA6, were ADP-ribosylated by pertussis toxin. GA3, GA4 and GA5 had Km values of 10, 60 and 7 nM, respectively. The molecular weights of some of these GTP-binding proteins were reduced after being labelled with [35S]GTP gamma S.  相似文献   

18.
Proteins binding guanosine triphosphate (GTP) have emerged as important regulators in several cellular processes in plants. To investigate any role of such proteins in chloroplast functions, we subjected envelope, stroma and thylakoid fractions isolated from spinach chloroplasts to two different GTP-binding assays. With both methods, we detected GTP-specific binding only in the envelope fraction. Two chloroplast envelope proteins with the apparent molecular weights of 30.5 and 33.5 kDa, respectively, bound [α-32P]GTP after SDS-PAGE followed by electroblotting onto a PVDF-membrane and renaturation. Both proteins were intrinsic proteins located in the outer chloroplast envelope. Also, when the fractions were incubated with [α-32P]GTP, followed by periodate oxidation and borohydride reduction to cross-link GTP to proteins, two proteins in the envelope fraction, of apparent molecular weights of 28 and 39 kDa, appeared to specifically bind GTP. When agents that stimulate heterotrimeric G-proteins, cholera toxin or the mastoparan analogue mas7, were added to isolated chloroplast envelope, the binding of radiolabelled GTP to the 39 kDa protein, a protein of the inner chloroplast envelope, was stimulated, whereas GTP-binding of the 28 kDa protein, a protein of the outer envelope, was unchanged. Mas7 also stimulated synthesis of monogalactosyl diacylglycerol in isolated chloroplast envelope. The occurrence and regulation of GTP-binding proteins in the chloroplast envelope suggests that GTP-binding proteins could be involved in communication with the extraplastidic compartment during chloroplast biogenesis and development.  相似文献   

19.
Seven fractions of GTP-binding proteins separated by gel filtration of an extract of epicotyls of Pisum sativum seedlings were partially characterized. Seven fractions of GTP-binding proteins tentatively designated GP1 to GP7 had the capacity to be ADP-ribosylated by pertussis toxin. Pooled fractions of GP2 to GP7 showed Km values 2, 20, 50, 10, 3 and 1 nM, respectively. The binding of [35S]GTP gamma S to GTP-binding proteins was prevented competitively in the presence of 0.1 mM GTP and also prevented in the presence of 0.1 mM ATP. Binding of [35S]GTP gamma S to the proteins produced a decrease in their molecular weights.  相似文献   

20.
To identify the role of ras oncogene and p21 in the coupling mechanism of GTP-binding proteins to adenylate cyclase, we used v-Ki-ras transformed NIH/3T3 fibroblast cells. In the previous study, we investigated that NaF, cholera toxin and forskolin remarkably enhanced the adenylate cyclase activity in transformed cells compared to normal NIH/3T3 cells. In the present study, adenylate cyclase was more enhanced by GTP gamma S in transformed cells than in normal cells. It was considered that p21 plays enhancing role in coupling of GTP-binding proteins to adenylate cyclase. Further, as measured by the degree of [32P] ADP-ribosylation of GTP-binding proteins by cholera toxin and pertussis toxin respectively, the amount of Gs (46 kDa) was almost equal in both cells, while the amount of Gi (41 kDa) in transformant was about one third of that in normal cells. This difference seems to be reflected in either the biological situations or the quantities of Gi. Our data suggest that v-Ki-ras transformation resulted in the decrease of Gi protein so that the inhibitory regulation on adenylate cyclase relatively becomes low and then stimulatory influence of Gs seems to be enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号