首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
N端9个氨基酸缺失对恶性疟融合抗原免疫原性的影响   总被引:3,自引:0,他引:3  
由两个疟疾疫苗候选抗原AMA 1(III)和MSP1 19融合而成的恶性疟原虫融合抗原 2 (PfCP 2 ) ,是一个很有应用前景的疟疾疫苗候选抗原。但PfCP 2表达产物为双带型 ,这影响到该疫苗候选抗原作为产品进入临床试验。为此分析了表达产物N末端的氨基酸序列 ,发现其中低分子量条带的N末端不完整 ,缺失 9个氨基酸。进一步用PCR技术对PfCP 2进行改建 ,使其N末端缺少 9个氨基酸 ,产生PfCP 2 .9基因。实验结果显示 :PfCP 2 .9在毕赤酵母中的表达产物为单一条带 ,且在表达水平、二硫键依赖的构象、免疫原性及免疫血清抑制疟原虫生长等方面与PfCP 2一致。PfCP 2表达产物双带型问题得到解决 ,为该融合抗原疟疾疫苗进入临床试验排除了重要障碍。  相似文献   

2.
Hu J  Chen Z  Gu J  Wan M  Shen Q  Kieny MP  He J  Li Z  Zhang Q  Reed ZH  Zhu Y  Li W  Cao Y  Qu L  Cao Z  Wang Q  Liu H  Pan X  Huang X  Zhang D  Xue X  Pan W 《PloS one》2008,3(4):e1952

Background

The P. falciparum chimeric protein 2.9 (PfCP-2.9) consisting of the sequences of MSP1-19 and AMA-1 (III) is a malaria vaccine candidate that was found to induce inhibitory antibodies in rabbits and monkeys. This was a phase I randomized, single-blind, placebo-controlled, dose-escalation study to evaluate the safety and immunogenicity of the PfCP-2.9 formulated with a novel adjuvant Montanide ISA720. Fifty-two subjects were randomly assigned to 4 dose groups of 10 participants, each receiving the test vaccine of 20, 50, 100, or 200 µg respectively, and 1 placebo group of 12 participants receiving the adjuvant only.

Methods and Findings

The vaccine formulation was shown to be safe and well-tolerated, and none of the participants withdrew. The total incidence of local adverse events (AEs) was 75%, distributed among 58% of the placebo group and 80% of those vaccinated. Among the vaccinated, 65% had events that were mild and 15% experienced moderate AEs. Almost all systemic adverse reactions observed in this study were graded as mild and required no therapy. The participants receiving the test vaccine developed detectable antibody responses which were boosted by the repeated vaccinations. Sixty percent of the vaccinated participants had high ELISA titers (>1∶10,000) of antigen-specific antibodies which could also recognize native parasite proteins in an immunofluorescence assay (IFA).

Conclusion

This study is the first clinical trial for this candidate and builds on previous investigations supporting PfCP-2.9/ISA720 as a promising blood-stage malaria vaccine. Results demonstrate safety, tolerability (particularly at the lower doses tested) and immunogenicity of the formulation. Further clinical development is ongoing to explore optimizing the dose and schedule of the formulation to decrease reactogenicity without compromising immunogenicity.

Trial Registration

Chinese State Food and Drug Administration (SFDA) 2002SL0046; Controlled-Trials.com ISRCTN66850051 [66850051]  相似文献   

3.

Background

The function of the 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1-19) expressed by Plasmodium has been demonstrated to be conserved across distantly related Plasmodium species. The green fluorescent protein (GFP) is a reporter protein that has been widely used because it can be easily detected in living organisms by fluorescence microscopy and flow cytometry.

Methodology and Results

In this study, we used gene targeting to generate transgenic P. berghei (Pb) parasites (designated as PfMSP1-19Pb) that express the MSP1-19 of P. falciparum (Pf) and the GFP reporter protein simultaneously. The replacement of the PbMSP1-19 locus by PfMSP1-19 was verified by PCR and Southern analysis. The expression of the chimeric PbfMSP-1 and the GFP was verified by Western blot and fluorescence microscopy, respectively. Moreover, GFP-expressing transgenic parasites in blood stages can be readily differentiated from other blood cells using flow cytometry. A comparion of growth rates between wild-type and the PfMSP1-19Pb transgenic parasite indicated that the replacement of the MSP1-19 region and the expression of the GFP protein were not deleterious to the transgenic parasites. We used this transgenic mouse parasite as a murine model to evaluate the protective efficacy in vivo of specific IgG elicited by a PfCP-2.9 malaria vaccine that contains the PfMSP1-19. The BALB/c mice passively transferred with purified rabbit IgG to the PfCP-2.9 survived a lethal challenge of the PfMSP1-19Pb transgenic murine parasites, but not the wild-type P. berghei whereas the control mice passively transferred with purified IgG obtained from adjuvant only-immunized rabbits were vulnerable to both transgenic and wild-type infections.

Conclusions

We generated a transgenic P. berghei line that expresses PfMSP1-19 and the GFP reporter gene simultaneously. The availability of this parasite line provides a murine model to evaluate the protective efficacy in vivo of anti-MSP1-19 antibodies, including, potentially, those elicited by the PfCP-2.9 malaria vaccine in human volunteers.  相似文献   

4.
P30P2MSP1(19) is a recombinant subunit vaccine derived from merozoite surface protein 1 (MSP1) of Plasmodium falciparum, the causative agent of malaria. P30P2MSP1(19) consists of two universal T-cell epitopes fused to the most C-terminal 19-kDa portion of MSP1, and this protein has previously shown promising potential as a vaccine for malaria. However, previous attempts at producing this molecule in Saccharomyces cerevisiae resulted in the production of a truncated form of the molecule missing most of the universal T-cell epitopes. Here, we report the production of full-length P30P2MSP1(19) in Pichia pastoris. As salt precipitation is a common problem during P. pastoris high-density fermentation, we utilized an alternative low-salt, fully defined medium that did not reduce growth rates or biomass yields to avoid precipitation. A total of 500 mg/L of secreted purified protein was produced in high cell density fermentation and the protein was purified in one step utilizing nickel-chelate chromatography. P30P2MSP1(19) produced in Pichia was reactive with monoclonal antibodies that recognize only conformational epitopes on correctly folded MSP1. Rabbits immunized with this molecule generated higher and more uniform antibody titers than rabbits immunized with the protein produced in Saccharomyces. P30P2MSP1(19) produced in Pichia may prove to be a more efficacious vaccine than that produced in Saccharomyces and Pichia would provide a system for the cost-effective production of such a vaccine.  相似文献   

5.
Immunizing pregnant women with a malaria vaccine is one approach to protecting the mother and her offspring from malaria infection. However, specific maternal Abs generated in response to vaccination and transferred to the fetus may interfere with the infant's ability to respond to the same vaccine. Using a murine model of malaria, we examined the effect of maternal 19-kDa C-terminal region of merozoite surface protein-1 (MSP1(19)) and Plasmodium yoelii Abs on the pups' ability to respond to immunization with MSP1(19). Maternal MSP1(19)-specific Abs but not P. yoelii-specific Abs inhibited Ab production following MSP1(19) immunization in 2-wk-old pups. This inhibition was correlated with the amount of maternal MSP1(19) Ab present in the pup at the time of immunization and was due to fewer specific B cells. Passively acquired Ab most likely inhibited the development of an Ab response by blocking access to critical B cell epitopes. If a neonate's ability to respond to MSP1(19) vaccination depends on the level of maternal Abs present at the time of vaccination, it may be necessary to delay immunization until Abs specific for the vaccinating Ag have decreased.  相似文献   

6.
Apical membrane antigen-1 (AMA-1) is a target of antibodies that inhibit invasion of Plasmodium falciparum into human erythrocytes and is a candidate for inclusion in a malaria vaccine. We have identified a line of P. falciparum (W2mef) less susceptible to anti-AMA1 antibodies raised to the protein from a heterologous parasite line (3D7). We have constructed transgenic P. falciparum expressing heterologous AMA-1 alleles. In vitro invasion assays show that these transgenic parasites differ from parental lines in susceptibility to inhibitory antibodies, providing direct evidence that sequence polymorphisms within AMA-1 are responsible for evasion of immune responses that inhibit parasite invasion. We also generated a parasite line that would express a chimeric AMA-1 protein, in which highly polymorphic residues within domain 1 were exchanged. Inhibition assays suggest that these residues are not sufficient for inhibition by invasion-blocking antibodies. This study is the first to use P. falciparum allelic exchange to examine the relationship between genetic diversity and susceptibility to protective antibodies. The findings have important implications for the development of an AMA-1-based malaria vaccine.  相似文献   

7.
The C-terminal region of the merozoite surface protein 1 (MSP1_(19)) is one of the mostpromising vaccine candidates against the erythrocytic forms of malaria.In the present study,a gene encodingPlasmodium falciparum MSP1_(19) was expressed in yeast Pichia pastoris.A non-glycosylated form of therecombinant protein MSP1_(19) was purified from culture medium.This recombinant protein maintains itsantigenicity.Significant immune responses were seen in C57BL/6 mice after the second immunization.Moreover,the specific antibodies recognized the native antigens of P.falciparum,The prevailing isotypesof immunoglobulin (Ig)G associated with immunization were IgG1,IgG2a and IgG2b.The antibodiesisolated from mouse sera immunized with MSP1_(19) can inhibit parasite growth in vitro.Based on theseimmunological studies,we concluded that MSP1_(19) deserves further evaluation in pre-clinical immunizationsagainst P.falciparum.  相似文献   

8.
The C-terminal 19-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) is a target of protective Abs against blood-stage infection and a leading candidate for inclusion in a human malaria vaccine. However, the precise role, relative importance, and mechanism of action of Abs that target this protein remain unclear. To examine the potential protective role of Abs to MSP-1(19) in individuals naturally exposed to malaria, we conducted a treatment time to infection study over a 10-wk period in 76 residents of a highland area of western Kenya during a malaria epidemic. These semi-immune individuals were not all equally susceptible to reinfection with P. falciparum following drug cure. Using a new neutralization assay based on transgenic P. falciparum expressing the P. chabaudi MSP-1(19) orthologue, individuals with high-level MSP-1(19)-specific invasion-inhibitory Abs (>75th percentile) had a 66% reduction in the risk of blood-stage infection relative to others in the population (95% confidence interval, 3-88%). In contrast, high levels of MSP-1(19) IgG or IgG subclass Abs measured by enzyme immunoassay with six different recombinant MSP-1(19) Ags did not correlate with protection from infection. IgG Abs measured by serology and functional invasion-inhibitory activity did not correlate with each other. These findings implicate an important protective role for MSP-1(19)-specific invasion inhibitory Abs in immunity to blood-stage P. falciparum infection, and suggest that the measurement of MSP-1(19) specific inhibitory Abs may serve as an accurate correlate of protection in clinical trials of MSP-1-based vaccines.  相似文献   

9.
Merozoite surface protein 1 (MSP1) of the malaria parasite Plasmodium falciparum is an important vaccine candidate antigen. Antibodies specific for the C-terminal maturation product, MSP1(19), have been shown to inhibit erythrocyte invasion and parasite growth. Specific monoclonal antibodies react with conformational epitopes contained within the two EGF-like domains that constitute the antigen MSP1(19). To gain greater insight into the inhibitory process, the authors selected two strongly inhibitory antibodies (designated 12.8 and 12.10) and modeled their structures by homology. Computational docking was used to generate antigen-antibody complexes and a selection filter based on NMR data was applied to obtain plausible models. Molecular Dynamics simulations of the selected complexes were performed to evaluate the role of specific side chains in the binding. Favorable complexes were obtained that complement the NMR data in defining specific binding sites. These models can provide valuable guidelines for future experimental work that is devoted to the understanding of the action mechanism of invasion-inhibitory antibodies.  相似文献   

10.
Merozoite surface protein 1 (MSP1) is the major protein component on the surface of the merozoite, the erythrocyte-invasive form of the malaria parasite Plasmodium. Present in all species of Plasmodium, it undergoes two distinct proteolytic maturation steps during the course of merozoite development that are essential for invasion of the erythrocyte. Antibodies specific for the C-terminal maturation product, MSP1-19, can inhibit erythrocyte invasion and parasite growth. This polypeptide is therefore considered to be one of the more promising malaria vaccine candidates. We describe here the crystal structure of recombinant MSP1-19 from P.falciparum (PfMSP1-19), the most virulent species of the parasite in humans, as a complex with the Fab fragment of the monoclonal antibody G17.12. This antibody recognises a discontinuous epitope comprising 13 residues on the first epidermal growth factor (EGF)-like domain of PfMSP1-19. Although G17.12 was raised against the recombinant antigen expressed in an insect cell/baculovirus system, it binds uniformly to the surface of merozoites from the late schizont stage, showing that the cognate epitope is exposed on the naturally occurring MSP1 polypeptide complex. Although the epitope includes residues that have been mapped to regions recognised by invasion-inhibiting antibodies studied by other workers, G17.12 does not inhibit erythrocyte invasion or MSP1 processing.  相似文献   

11.
The C-terminal 42 kDa fragments of the P. falciparum Merozoite Surface Protein 1, MSP1-42 is a leading malaria vaccine candidate. MSP1-33, the N-terminal processed fragment of MSP1-42, is rich in T cell epitopes and it is hypothesized that they enhance antibody response toward MSP1-19. Here, we gave in vivo evidence that T cell epitope regions of MSP1-33 provide functional help in inducing anti-MSP1-19 antibodies. Eleven truncated MSP1-33 segments were expressed in tandem with MSP1-19, and immunogenicity was evaluated in Swiss Webster mice and New Zealand White rabbits. Analyses of anti-MSP1-19 antibody responses revealed striking differences in these segments' helper function despite that they all possess T cell epitopes. Only a few fragments induced a generalized response (100%) in outbred mice. These were comparable to or surpassed the responses observed with the full length MSP1-42. In rabbits, only a subset of truncated antigens induced potent parasite growth inhibitory antibodies. Notably, two constructs were more efficacious than MSP1-42, with one containing only conserved T cell epitopes. Moreover, another T cell epitope region induced high titers of non-inhibitory antibodies and they interfered with the inhibitory activities of anti-MSP1-42 antibodies. In mice, this region also induced a skewed TH2 cellular response. This is the first demonstration that T cell epitope regions of MSP1-33 positively or negatively influenced antibody responses. Differential recognition of these regions by humans may play critical roles in vaccine induced and/or natural immunity to MSP1-42. This study provides the rational basis to re-engineer more efficacious MSP1-42 vaccines by selective inclusion and exclusion of MSP1-33 specific T cell epitopes.  相似文献   

12.
Merozoite surface protein 2 (MSP2) is a GPI-anchored protein on the surface of the merozoite stage of the malaria parasite Plasmodium falciparum. It is largely disordered in solution, but has a propensity to form amyloid-like fibrils under physiological conditions. The N-terminal conserved region (MSP2(1-25)) is part of the protease-resistant core of these fibrils. To investigate the structure and dynamics of this region, its ability to form fibrils, and the role of individual residues in these properties, we have developed a bacterial expression system that yields > or =10 mg of unlabeled or (15)N-labeled peptide per litre of culture. Two recombinant versions of MSP2(1-25), wild-type and a Y7A/Y16A mutant, have been produced. Detailed conformational analysis of the wild-type peptide and backbone (15)N relaxation data indicated that it contains beta-turn and nascent helical structures in the central and C-terminal regions. Residues 6-21 represent the most ordered region of the structure, although there is some flexibility around residues 8 and 9. The 10-residue sequence (MSP2(7-16)) (with two Tyr residues) was predicted to have a higher propensity for beta-aggregation than the 8-mer sequence (MSP2(8-15)), but there was no significant difference in conformation between MSP2(1-25) and [Y7A,Y16A]MSP2(1-25) and the rate of fibril formation was only slightly slower in the mutant. The peptide expression system described here will facilitate further mutational analyses to define the roles of individual residues in transient structural elements and fibril formation, and thus contribute to the further development of MSP2 as a malaria vaccine candidate.  相似文献   

13.
The apical membrane antigen-1 (AMA-1) of Plasmodium falciparum is a prime malaria asexual blood-stage vaccine candidate. Antigenic variation is one of the main obstacles in the development of a universal effective malaria vaccine. The extracellular region of P. falciparum AMA-1 (PfAMA-1) consists of three domains (I-III), of which the domain I is the most diverse region of this antigen. The objective of our study was to investigate and analyze the extent of genetic diversity and the effectiveness of natural selection at the AMA-1 domain I of P. falciparum in isolates from Iran. A fragment of ama-1 gene spanning domain I was amplified by nested PCR from 48 P. falciparum isolates collected from two major malaria endemic areas of Iran during 2009 to August 2010 and sequenced. Genetic polymorphism and statistical analyses were performed using DnaSP and MEGA software packages. Analysis of intrapopulation diversity revealed relatively high nucleotide and haplotype diversity at the PfAMA-1 domain I of Iranian isolates. Neutrality tests provided strong evidence of positive natural selection acting on the sequenced gene region. The findings also demonstrated that, in addition to natural selection, intragenic recombination may contribute to the diversity observed at the domain I. The results obtained will have significant implications in the design and the development of an AMA-1-based vaccine against falciparum malaria.  相似文献   

14.
Maternal Abs generated as a result of prior exposure to infectious agents such as the malaria parasite are transferred from the mother through the placenta to the fetus. Numerous studies have attributed the resistance to malaria infection observed in neonates and infants up to 6 mo of age to the presence of maternally derived Abs. However, recent studies have produced conflicting results suggesting that alternative protective mechanisms may be responsible. Although the presence of maternally derived Abs in the infant is not disputed, their exact role in the infant is unknown. Even less clear is the effect that maternally derived Abs, if generated in response to vaccination, may have on the infant's ability to respond to malaria infection. Studies on mouse pups were performed to determine the role of the 19-kDa region of merozoite surface protein 1 (MSP1(19)) and Plasmodium yoelii-specific Abs in neonatal malaria infection and to examine their effect on the development of a specific immune response in the pup. It was shown that P. yoelii- and MSP1(19)-specific Abs transferred to the pup from the mother act to suppress the growth of the parasite in the pup. However, the maternally derived Abs interfered with the development of the pups' own Ab response to the parasite by altering the fine specificity of the response. These results suggest that immunizing women of child-bearing age with a malaria vaccine candidate such as MSP1(19) would not prevent the infant from producing Abs in response to malaria infection, but it may affect the region of the Ag to which it responds.  相似文献   

15.
We have applied NMR cross-saturation with TROSY detection to the problem of precisely mapping conformational epitopes on complete protein antigen molecules. We have investigated complexes of the Fab fragments of two antibodies that have parasite inhibitory activity, bound to the important malaria vaccine candidate antigen, Plasmodium falciparum MSP1(19). The results indicate remarkable overlap between these epitopes for inhibitory antibodies, and will provide a basis for theoretical modeling of the antibody-antigen interface.  相似文献   

16.
In Plasmodium falciparum malaria, erythrocyte invasion by circulating merozoites may occur via two distinct pathways involving either a sialic acid-dependent or -independent mechanism. Earlier, we identified two nonglycosylated exofacial regions of erythrocyte band 3 termed 5ABC and 6A as an important host receptor in the sialic acid-independent invasion pathway. 5ABC, a major segment of this receptor, interacts with the 42-kDa processing product of merozoite surface protein 1 (MSP1(42)) through its 19-kDa C-terminal domain. Here, we show that two regions of merozoite surface protein 9 (MSP9), also known as acidic basic repeat antigen, interact directly with 5ABC during erythrocyte invasion by P. falciparum. Native MSP9 as well as recombinant polypeptides derived from two regions of MSP9 (MSP9/Delta1 and MSP9/Delta2) interacted with both 5ABC and intact erythrocytes. Soluble 5ABC added to the assay mixture drastically diminished the binding of MSP9 to erythrocytes. Recombinant MSP9/Delta1 and MSP9/Delta2 present in the culture medium blocked P. falciparum reinvasion into erythrocytes in vitro. Native MSP9 and MSP1(42), the two ligands binding to the 5ABC receptor, existed as a stable complex. Our results establish a novel concept wherein the merozoite exploits a specific complex of co-ligands on its surface to target a single erythrocyte receptor during invasion. This new paradigm poses a new challenge in the development of a vaccine for blood stage malaria.  相似文献   

17.
Erythrocyte invasion by malaria parasites requires multiple protein interactions. Our earlier studies showed that erythrocyte band 3 is an invasion receptor binding Plasmodium falciparum merozoite surface protein 1 and 9 (MSP1, MSP9) existing as a co-ligand complex. In this study, we have used biochemical approaches to identify the binding sites within MSP1 and MSP9 involved in the co-ligand complex formation. A major MSP9-binding site is located within the 19kDa C-terminal domain of MSP1 (MSP1(19)). Two specific regions of MSP9 defined as Delta1a and Delta2 interacted with native MSP1(19). The 42 kDa domain of MSP1 (MSP1(42)) bearing MSP1(19) in the C-terminus bound directly to both MSP9/Delta1a and Delta2. Thus, the regions of MSP1 and MSP9 interacting with the erythrocyte band 3 receptor are also responsible for assembling the co-ligand complex. Our evidence suggests a ternary complex is formed between MSP1, MSP9, and band 3 during erythrocyte invasion by P. falciparum.  相似文献   

18.
African infants are often born of mothers infected with malaria during pregnancy. This can result in fetal exposure to malaria-infected erythrocytes or their soluble products with subsequent fetal immune priming or tolerance in utero. We performed a cohort study of 30 newborns from a malaria holoendemic area of Kenya to determine whether T cell sensitization to Plasmodium falciparum merozoite surface protein-1 (MSP-1) at birth correlates with infant development of anti-MSP-1 Abs acquired as a consequence of natural malaria infection. Abs to the 42- and 19-kDa C-terminal processed fragments of MSP-1 were determined by serology and by a functional assay that quantifies invasion inhibition Abs against the MSP-1(19) merozoite ligand (MSP-1(19) IIA). Infants had detectable IgG and IgM Abs to MSP-1(42) and MSP-1(19) at 6 mo of age with no significant change by age 24-30 mo. In contrast, MSP-1(19) IIA levels increased from 6 to 24-30 mo of age (16-29%, p < 0.01). Infants with evidence of prenatal exposure to malaria (defined by P. falciparum detection in maternal, placental, and/or cord blood compartments) and T cell sensitization at birth (defined by cord blood lymphocyte cytokine responses to MSP-1) showed the greatest age-related increase in MSP-1(19) IIA compared with infants with prenatal exposure to malaria but who lacked detectable T cell MSP-1 sensitization. These data suggest that fetal sensitization or tolerance to MSP-1, associated with maternal malaria infection during pregnancy, affects the development of functional Ab responses to MSP-1 during infancy.  相似文献   

19.
BACKGROUND: The 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)) has been suggested as candidate for part of a subunit vaccine against malaria. A major concern in vaccine development is the polymorphism observed in different plasmodial strains. The present study examined the extension and immunological relevance of the allelic polymorphism of the MSP1(19) from Plasmodium vivax, a major human malaria parasite. MATERIALS AND METHODS: We cloned and sequenced 88 gene fragments representing the MSP1(19) from 28 Brazilian isolates of P. vivax. Subsequently, we evaluated the reactivity of rabbit polyclonal antibodies, a monoclonal antibody, and a panel of 80 human sera to bacterial and yeast recombinant proteins representing the two allelic forms of P. vivax MSP1(19) described thus far. RESULTS: We observed that DNA sequences encoding MSP1(19) were not as variable as the equivalent region of other species of Plasmodium, being conserved among Brazilian isolates of P. vivax. Also, we found that antibodies are directed mainly to conserved epitopes present in both allelic forms of the protein. CONCLUSIONS: Our findings suggest that the use of MSP1(19) as part of a subunit vaccine against P. vivax might be greatly facilitated by the limited genetic polymorphism and predominant recognition of conserved epitopes by antibodies.  相似文献   

20.
One of the most promising vaccine candidates against the erythrocytic forms of malaria is the 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)). As part of our studies aimed at the development of a Plasmodium vivax malaria vaccine, we characterized the immunogenic properties of a new bacterial recombinant protein containing the P. vivax MSP1(19) and two helper T-cell epitopes, the synthetic universal pan allelic DR epitope (PADRE) and a new internal MSP1 P. vivax epitope (DYDVVYLKPLAGMYK). We found that the recognition of His6MSP1(19)-DYDVVYLKPLAGMYK-PADRE was as good as the recognition of His6MSP1(19) indicating that the presence of the T-cell epitopes PADRE and DYDVVYLKPLAGMYK did not modify the MSP1(19) epitopes recognized by human IgG. The recombinant protein His6MSP1(19)-DYDVVYLKPLAGMYK-PADRE proved to be highly immunogenic in marmosets (Callithrix jacchus jacchus) when administered in incomplete Freund's adjuvant. However, when administered in other adjuvant formulations such as Quil A, CpG ODN 2006 or MPL/TDM, antibody titers to MSP1(19) were significantly lower. Among these three adjuvants, Quil A proved to be the most efficient one generating antibody titers significantly higher than the others. These results indicated that under the circumstances evaluated, adjuvants were key for the immunogenicity of the recombinant protein His6MSP1(19)-DYDVVYLKPLAGMYK-PADRE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号