共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
Anouck Becker Georges Pierre Schmartz Laura Grger Nadja Grammes Valentina Galata Hannah Philippeit Jacqueline Weiland Nicole Ludwig Eckart Meese Sascha Tierling Jrn Walter Andreas Schwiertz Jrg Spiegel Gudrun Wagenpfeil Klaus Faßbender Andreas Keller Marcus M. Unger 《基因组蛋白质组与生物信息学报(英文版)》2022,20(2):274
The composition of the gut microbiota is linked to multiple diseases, including Parkinson’s disease (PD). Abundance of bacteria producing short-chain fatty acids (SCFAs) and fecal SCFA concentrations are reduced in PD. SCFAs exert various beneficial functions in humans. In the interventional, monocentric, open-label clinical trial “Effects of Resistant Starch on Bowel Habits, Short Chain Fatty Acids and Gut Microbiota in Parkinson’sDisease” (RESISTA-PD; ID: ), we aimed at altering fecal SCFAs by an 8-week prebiotic intervention with resistant starch (RS). We enrolled 87 subjects in three study-arms: 32 PD patients received RS (PD + RS), 30 control subjects received RS, and 25 PD patients received solely dietary instructions. We performed paired-end 100 bp length metagenomic sequencing of fecal samples using the BGISEQ platform at an average of 9.9 GB. RS was well-tolerated. In the PD + RS group, fecal butyrate concentrations increased significantly, and fecal calprotectin concentrations dropped significantly after 8 weeks of RS intervention. Clinically, we observed a reduction in non-motor symptom load in the PD + RS group. The reference-based analysis of metagenomes highlighted stable alpha-diversity and beta-diversity across the three groups, including bacteria producing SCFAs. Reference-free analysis suggested punctual, yet pronounced differences in the metagenomic signature in the PD + RS group. RESISTA-PD highlights that a prebiotic treatment with RS is safe and well-tolerated in PD. The stable alpha-diversity and beta-diversity alongside altered fecal butyrate and calprotectin concentrations call for long-term studies, also investigating whether RS is able to modify the clinical course of PD. NCT02784145相似文献
3.
4.
Jing Liu Zongren Hou Jun Wu Kailun Liu Da Li Tingting Gao Wenjing Liu Bin An Yun Sun Fan Mo Liu Wang Yukai Wang Jie Hao Baoyang Hu 《Cell proliferation》2021,54(8)
ObjectivesIn this study, we administered immunity‐and‐matrix regulatory cells (IMRCs) via tail vein (IV) and intracerebroventricular (ICV) injection to 3‐month‐old 5×FAD transgenic mice to assess the effects of IMRC transplantation on the behaviour and pathology of early‐stage Alzheimer''s disease (AD).Materials and methodsClinical‐grade human embryonic stem cell (hESC)‐derived IMRCs were produced under good manufacturing practice (GMP) conditions. Three‐month‐old 5×FAD mice were administered IMRCs via IV and ICV injection. After 3 months, the mice were subjected to behavioural tests and electrophysiological analysis to evaluate their cognitive function, memory ability and synaptic plasticity. The effect of IMRCs on amyloid‐beta (Aβ)‐related pathology was detected by thioflavin‐S staining and Western blot. Quantitative real‐time PCR, ELISA and immunostaining were used to confirm that IMRCs inhibit neuroinflammation. RNA‐seq analysis was performed to measure changes in gene expression and perform a pathway analysis in response to IMRC treatment.ResultsIMRC administration via tail vein injection significantly ameliorated cognitive deficits in early‐stage AD (5×FAD) mice. However, no significant change was observed in the characteristic pathology of AD in the ICV group. Plaque analysis revealed that IMRCs did not influence either plaque deposition or BACE1 expression. In addition, IMRCs inhibited inflammatory responses and reduced microglial activation in vivo.ConclusionsWe have shown that peripheral administration of IMRCs can ameliorate AD pathology and associated cognitive deficits. 相似文献
5.
Olivier Etienne Amandine Bery Telma Roque Chantal Desmaze Fran?ois D. Boussin 《Journal of visualized experiments : JoVE》2014,(87)
Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage.An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues. 相似文献
6.
7.
The exact pathogenesis of Parkinson's disease (PD) is still unknown and proper mechanisms that correspond to the disease remain unidentified. It is understood that PD is age-related; as age increases, the chance of onset responds accordingly. Although there are no current means of curing PD, the understanding of reactive oxygen species (ROS) provides significant insight to possible treatments. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neural apoptosis generation in PD. Dopaminergic neurons are severely damaged as a result of the deficiency. Symptoms such as inhibited cognitive ability and loss of smooth motor function are the results of such impairment. The genetic mutations of Parkinson's related proteins such as PINK1 and LRRK2 contribute to mitochondrial dysfunction which precedes ROS formation. Various pathways are inhibited by these mutations, and inevitably causing neural cell damage. Antioxidants are known to negate the damaging effects of free radical overexpression. This paper expands on the specific impact of mitochondrial genetic change and production of free radicals as well as its correlation to the neurodegeneration in Parkinson's disease. 相似文献
8.
The chemokine receptor CXCR2 and its ligands are implicated in the progression of tumours and various inflammatory diseases. Activation of the CXCLs/CXCR2 axis activates multiple signalling pathways, including the PI3K, p38/ERK, and JAK pathways, and regulates cell survival and migration. The CXCLs/CXCR2 axis plays a vital role in the tumour microenvironment and in recruiting neutrophils to inflammatory sites. Extensive infiltration of neutrophils during chronic inflammation is one of the most important pathogenic factors in various inflammatory diseases. Chronic inflammation is considered to be closely correlated with initiation of cancer. In addition, immunosuppressive effects of myeloid-derived suppressor cells (MDSCs) against T cells attenuate the anti-tumour effects of T cells and promote tumour invasion and metastasis. Over the last several decades, many therapeutic strategies targeting CXCR2 have shown promising results and entered clinical trials. In this review, we focus on the features and functions of the CXCLs/CXCR2 axis and highlight its role in cancer and inflammatory diseases. We also discuss its potential use in targeted therapies. 相似文献