首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Rice panicle is the sink organ where assimilation product accumulates, and its morphology determines the rice yield. Panicle length has been suggested as a yield-related trait, but the genetic factor for its control is still limited. In this study, we carried out fine-mapping of qPL8, a QTL identified for panicle length in our previous work. Near isogenic line (NIL) with qPL8 exhibited elongated panicle without obvious effect on other panicle elements. With five key recombinants from NIL population, the locus was finally narrowed down to a 278-kb region, where 44 genes are annotated. By comparing the genomic sequence of two parents, 17 genes were identified with SNPs or InDels variations in the coding region. Expression analysis showed that eight genes were up-regulated in the NIL with qPL8. Considering both the coding variation and expression status, several candidate genes for the locus were identified, and OsMADS37 was raised as the most possible candidate. Interestingly, an expression QTL (eQTL) also resides in the locus, leading to a cluster of gene expression variation in the region. This study will facilitate the application of qPL8 locus in rice breeding for yield potential.  相似文献   

9.
10.
《Genomics》2022,114(4):110381
Diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae) is considered one of the most destructive worldwide agricultural pests and has developed various defence mechanisms to fight against the available pesticides. Understanding the host-defence system of P. xylostella is vital for developing biocontrol-based pest management strategies. Although there are several studies on P. xylostella, little is known about the changes in the immune system during the larva-to-adult metamorphosis. RNA-seq and iTRAQ investigations of P. xylostella from 2-day-old fourth instar larvae (L4D2), pupa (P0), and adult (A0) were done to understand these alterations at a molecular level. A total of 412/ 584 up-regulated and 1430/ 757 down-regulated genes/proteins between larva and pupa, 813/ 589 up-regulated and 1206/ 846 down-regulated genes/proteins between pupa and adult were identified. It was shown that the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) expression were up-regulated during the pupation and emergence of metamorphosis. The pathway enrichment analysis demonstrated that DEGs and DEPs were mainly associated with the energy generation and metabolism and innate immunity of the insect. The expression of immune-related and developmental-related genes were significantly different during the developmental process of P. xylostella. Moreover, the expression of four focused genes, i.e., serine proteinase inhibitor (Serpin-15), prophenoloxidase activating proteinase 1 (PAP-1) and 3a (PAP-3a), Gram-negative bacteria-binding protein (GNBP-6), was different in developmental stages and after Bacillus thuringiensis HD73 and Metarhizium anisopliae infection. The phenoloxidase (PO) activity in plasma was also significantly up-regulated during the pathogen infection. Recombinant proteins PAP-1, PAP-3a, GNBP-6 could significantly trigger the PO activity in vitro, Serpin-15 could suppress the PO activity. Taken together, these results indicate that Serpin-15, PAP-1, PAP-3a, and GNBP-6 might have the potential for co-regulation of immunity and development in P. xylostella. In conclusion, this study provided the immune system dynamics in the developmental process of P. xylostella and identified four candidate genes that can serve as potential targets for pest control strategies.  相似文献   

11.

Background

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, substantially reduces wheat grain yield and quality worldwide. Proteins play important roles in defense against the fungal infection. This study characterized differentially expressed proteins between near-isogenic lines (NILs) contrasting in alleles of Fhb1, a major FHB resistance gene in wheat, to identify proteins underlining FHB resistance of Fhb1.

Methods

The two-dimensional protein profiles were compared between the Fusarium-inoculated spikes of the two NILs collected 72 h after inoculation. The protein profiles of mock- and Fusarium-inoculated Fhb1+NIL were also compared to identify pathogen-responsive proteins.

Results

Eight proteins were either induced or upregulated in inoculated Fhb1+NIL when compared with mock-inoculated Fhb1+NIL; nine proteins were either induced or upregulated in the Fusarium-inoculated Fhb1+NIL when compared with Fusarium-inoculated Fhb1NIL. Proteins that were differentially expressed in the Fhb1+NIL, not in the Fhb1NIL, after Fusarium inoculation included wheat proteins for defending fungal penetration, photosynthesis, energy metabolism, and detoxification.

Conclusions

Coordinated expression of the identified proteins resulted in FHB resistance in Fhb1+NIL. The results provide insight into the pathway of Fhb1-mediated FHB resistance.  相似文献   

12.
Tm-2 and Tm-2a are genes conferring resistance to tomato mosaic virus in Lycopersicon esculentum. They are allelic and originated from different lines of L. peruvianum, a wild relative of tomato. In this study, random amplified polymorphic DNA (RAPD) markers linked to these genes were screened in nearly isogenic lines (NILs). To detect RAPDs differentiating NILs, 220 different 10-base oligonucleotide primers were examined by the polymerase chain reaction (PCR), and 43 of them generated 53 consistent polymorphic fragments among the NILs. Out of these 53 fragments, 13 were arbitrarily chosen and examined in respect of whether they were linked to the netted virescent (nv) gene, since nv is tightly linked to the Tm-2 locus and its phenotype is more easily distinguishable. As a result, all 13 markers were shown to be linked to nv, and hence to the Tm-2 locus. Among them, two fragments specific to the NIL carrying Tm-2 three specific to the NIL carrying Tm-2a, and four specific to both of these NILs were closely linked to nv.  相似文献   

13.
We investigated variations in the gene expression of Bombyx mori following infection with a densonucleosis virus (BmDNV-Z). Two B. mori near-isogenic lines, Jingsong and Jingsong.nsd-Z.NIL, which are highly susceptible and completely resistant to BmDNV-Z, respectively, were used in this study. The infection profiles of BmDNV-Z in the midguts of the B. mori Jingsong and Jingsong.nsd-Z.NIL larvae revealed that the virus invaded the midguts of both of these strains. However, its proliferation was notably inhibited in the midgut of the resistant strain. By using the suppression subtractive hybridization method, three cDNA libraries were constructed to compare BmDNV-Z responsive gene expression between the two silkworm lines. In total, 151 differentially expressed genes were obtained. Real-time qPCR analysis confirmed that 11 genes were significantly up-regulated in the midgut of the Jingsong.nsd-Z.NIL strain following BmDNV-Z infection. Our results imply that these up-regulated genes might be involved in B. mori immune responses against BmDNV infection.  相似文献   

14.
Anthracnose, caused by the fungusColletotrichum lindemuthianum, is a severe disease of common bean (Phaseolus vulgaris L.) controlled, in Europe, by a single dominant gene,Are. Four pairs of near-isogenic lines (NILs) were constructed, in which theAre gene was introgressed into different genetic backgrounds. These pairs of NILs were used to search for DNA markers linked to the resistance gene. Nine molecular markers, five RAPDs and four RFLPs, were found to discriminate between the resistant and the susceptible members of these NILs. A backcross progeny of 120 individuals was analysed to map these markers in relation to theAre locus. Five out of the nine markers were shown to be linked to theAre gene within a distance of 12.0 cM. The most tightly linked, a RAPD marker, was used to generate a pair of primers that specifically amplify this RAPD (sequence characterized amplified region, SCAR).The research was supported by the CNRS and the Ministère Français de l'Education Nationale  相似文献   

15.
The SAS13 SCAR marker, tightly linked with the Co-4 2 gene segregating in a population of 1018 F2 individual plants, was used as a starting point for cloning gene sequences associated with the Co-4 locus that conditions resistance to anthracnose caused by the fungal pathogen Colletotrichum lindemuthianum in common bean (Phaseolus vulgaris). A contig developed from genomic clones flanking the marker region revealed a 1110-bp open reading frame, named COK-4. The predicted COK-4 protein contains a serine-threonine kinase domain highly similar to the protein encoded by the Pto gene in tomato, but with a highly hydrophobic membrane-spanning region. COK-4 homologs were cloned and sequenced from different bean cultivars. Single nucleotide polymorphisms were found between the homologous sequences and were confirmed with three restriction enzymes. Restriction patterns among three bean cultivars known to possess different alleles at the Co-4 locus, SEL 1308 (Co-4 2 ), TO (Co-4) and Black Magic (co-4), were polymorphic. Absolute co-segregation between COK-4 restriction patterns and the disease phenotype was observed in 96 F3 families. More than one copy of the COK-4 gene homolog exists in the bean genome as demonstrated by Southern analysis. These results suggest that COK-4 is part of the Co-4 locus conditioning resistance to C. lindemuthianum in bean. Received: 22 June 2000 / Accepted: 20 November 2000  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号