首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population.Rice (Oryza sativa) is a staple food for nearly one-half of the global population. Given the rapid growth of the world’s population, there is an urgent need to increase rice yield. Rice yield is a complex trait that is directly associated with grain size, panicle number, and the number of grains per panicle (Xing and Zhang, 2010). Increasing grain size is a prime breeding target, and several genes known to control rice grain size, such as GRAIN SIZE3 (GS3), GS5, GW2 QTL for rice grain width and weight (GW2), GW8, and rice seed width5, have been identified (Fan et al., 2006; Song et al., 2007; Shomura et al., 2008; Li et al., 2011a; Wang et al., 2012). However, our knowledge of the mechanisms that control rice yield is limited. Thus, further improving rice yield remains a challenge for breeders (Sakamoto and Matsuoka, 2008). Identifying and characterizing unique genes or targets that regulate yield traits would improve our understanding of the molecular mechanisms that regulate yield traits and facilitate the breeding of new rice varieties with higher yields.The carbohydrates in rice grains originate from photosynthesis that is carried out predominantly in leaves (sources). Therefore, grain filling and rice yield depend on the efficient transport of carbohydrates from the leaves to seeds (sinks). In most plants, Suc is the main carbohydrate transported long distance in the veins to support the growth and development of roots, flowers, fruits, and seeds (Baker et al., 2012; Braun, 2012). Recently, the entire pathway for the export of Suc from leaves has been elucidated (Baker et al., 2012; Braun, 2012). Suc is synthesized in leaf mesophyll cells and diffuses from cell to cell through plasmodesmata until it reaches the phloem parenchyma cells (Slewinski and Braun, 2010). The SWEET transporters mediate Suc efflux from the phloem parenchyma cells into the apoplast, where Suc is subsequently loaded into the phloem sieve element-companion cell (SE/CC) complexes by Suc transporters (SUTs; Braun and Slewinski, 2009; Ayre, 2011; Chen et al., 2012). The resultant accumulation of Suc in sieve elements produces a hydrostatic pressure gradient that results in the bulk flow of Suc through a conduit of contiguous sieve elements, leading to its arrival and unloading in sink tissues (Lalonde et al., 2004; Baker et al., 2012).Genetic evidence has demonstrated that apoplastic Suc phloem loading is critical for growth, development, and reproduction in Arabidopsis (Arabidopsis thaliana). AtSWEET11 and AtSWEET12 are localized to the plasma membrane of the phloem and are expressed in a subset of phloem parenchyma cells in minor veins. These transporters mediate Suc efflux from phloem parenchyma cells into the apoplast prior to Suc uptake by SE/CC (Chen et al., 2012). The atsweet11 or atsweet12 single mutants exhibit no aberrant phenotypes, possibly due to genetic redundancy. However, atsweet11;12 double mutants are mildly chlorotic and display slower growth and higher levels of starch and sugar accumulation in the leaves than do wild-type plants (Chen et al., 2012). Arabidopsis phloem-specific sucrose transporter (AtSUC2) is a phloem-specific SUT that is expressed specifically in companion cells (Stadler and Sauer, 1996). AtSUC2 plays an essential role in phloem Suc loading and is necessary for efficient Suc transport from source to sink tissues in Arabidopsis (Stadler and Sauer, 1996; Gottwald et al., 2000; Srivastava et al., 2008). The atsuc2 mutants show stunted growth, retarded development, and sterility. Furthermore, these mutants accumulate excess starch in the leaves and fail to transport sugar efficiently to the roots and inflorescences (Gottwald et al., 2000).The proper control of carbohydrate partitioning is fundamental to crop yield (Braun, 2012). It has been reported that increasing sink grain strength by improving assimilate uptake capacity could be a promising approach toward obtaining higher yield. For example, seed-specific overexpression of a potato (Solanum tuberosum) SUT increased Suc uptake and growth rates of developing pea (Pisum sativum) cotyledons (Rosche et al., 2002). In addition, the Suc uptake capacity of grains and storage protein biosynthesis was increased in transgenic wheat (Triticum aestivum) plants expressing the barley (Hordeum vulgare) SUT HvSUT1 under the control of an endosperm-specific promoter (Weichert et al., 2010). Moreover, it was recently found that these transgenic wheat plants had a higher thousand grain weight and grain width and length, as well as a 28% increase in grain yield (Saalbach et al., 2014).Since the carbohydrates in rice grains originate from photosynthesis in source leaves, and carbohydrate partitioning from source leaves to heterotrophic sinks (e.g. seeds) is mediated by Suc transport in plants (Lalonde et al., 2004; Ayre, 2011), enhancing the capacity for Suc transport from leaves to seeds theoretically could increase crop yield. However, until now, enhancing Suc transport from leaves to seeds has not been shown to improve yield (Ainsworth and Bush, 2011).Here, we tested the hypothesis that enhancing Suc transport from leaves to seeds would increase rice yield. We expressed Arabidopsis SUC2 under control of the phloem protein2 promoter (pPP2) in rice and found that enhancing Suc loading did indeed increase rice yield. The pPP2::AtSUC2 plants produced larger grain than the wild type and showed grain yield increases of up to 16% in field trials. Our results suggest that manipulating phloem Suc transport is a useful strategy for increasing grain yield in rice and other cereal crops.  相似文献   

8.
9.
10.
11.
Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host.Plant pathogens are often classified as necrotrophic or biotrophic, depending on their infection strategy (Glazebrook, 2005; Nishimura and Dangl, 2010). Necrotrophic pathogens kill living host cells and use the decayed plant tissue as a substrate to colonize the plant, whereas biotrophic pathogens parasitize living plant cells by employing effector molecules that suppress the host immune system (Pel and Pieterse, 2013). Despite this binary classification, the majority of pathogenic microbes employ a hemibiotrophic infection strategy, which is characterized by an initial biotrophic phase followed by a necrotrophic infection strategy at later stages of infection (Perfect and Green, 2001). The pathogenic fungi Magnaporthe grisea, Sclerotinia sclerotiorum, and Mycosphaerella graminicola, the oomycete Phytophthora infestans, and the bacterial pathogen Pseudomonas syringae are examples of hemibiotrophic plant pathogens (Perfect and Green, 2001; Koeck et al., 2011; van Kan et al., 2014; Kabbage et al., 2015).Despite considerable progress in our understanding of plant resistance to necrotrophic and biotrophic pathogens (Glazebrook, 2005; Mengiste, 2012; Lai and Mengiste, 2013), recent debate highlights the dynamic and complex interplay between plant-pathogenic microbes and their hosts, which is raising concerns about the use of infection strategies as a static tool to classify plant pathogens. For instance, the fungal genus Botrytis is often labeled as an archetypal necrotroph, even though there is evidence that it can behave as an endophytic fungus with a biotrophic lifestyle (van Kan et al., 2014). The rice blast fungus Magnaporthe oryzae, which is often classified as a hemibiotrophic leaf pathogen (Perfect and Green, 2001; Koeck et al., 2011), can adopt a purely biotrophic lifestyle when infecting root tissues (Marcel et al., 2010). It remains unclear which signals are responsible for the switch from biotrophy to necrotrophy and whether these signals rely solely on the physiological state of the pathogen, or whether host-derived signals play a role as well (Kabbage et al., 2015).The plant hormones salicylic acid (SA) and jasmonic acid (JA) play a central role in the activation of plant defenses (Glazebrook, 2005; Pieterse et al., 2009, 2012). The first evidence that biotrophic and necrotrophic pathogens are resisted by different immune responses came from Thomma et al. (1998), who demonstrated that Arabidopsis (Arabidopsis thaliana) genotypes impaired in SA signaling show enhanced susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis (formerly known as Peronospora parastitica), while JA-insensitive genotypes were more susceptible to the necrotrophic fungus Alternaria brassicicola. In subsequent years, the differential effectiveness of SA- and JA-dependent defense mechanisms has been confirmed in different plant-pathogen interactions, while additional plant hormones, such as ethylene, abscisic acid (ABA), auxins, and cytokinins, have emerged as regulators of SA- and JA-dependent defenses (Bari and Jones, 2009; Cao et al., 2011; Pieterse et al., 2012). Moreover, SA- and JA-dependent defense pathways have been shown to act antagonistically on each other, which allows plants to prioritize an appropriate defense response to attack by biotrophic pathogens, necrotrophic pathogens, or herbivores (Koornneef and Pieterse, 2008; Pieterse et al., 2009; Verhage et al., 2010).In addition to plant hormones, reactive oxygen species (ROS) play an important regulatory role in plant defenses (Torres et al., 2006; Lehmann et al., 2015). Within minutes after the perception of pathogen-associated molecular patterns, NADPH oxidases and apoplastic peroxidases generate early ROS bursts (Torres et al., 2002; Daudi et al., 2012; O’Brien et al., 2012), which activate downstream defense signaling cascades (Apel and Hirt, 2004; Torres et al., 2006; Miller et al., 2009; Mittler et al., 2011; Lehmann et al., 2015). ROS play an important regulatory role in the deposition of callose (Luna et al., 2011; Pastor et al., 2013) and can also stimulate SA-dependent defenses (Chaouch et al., 2010; Yun and Chen, 2011; Wang et al., 2014; Mammarella et al., 2015). However, the spread of SA-induced apoptosis during hyperstimulation of the plant immune system is contained by the ROS-generating NADPH oxidase RBOHD (Torres et al., 2005), presumably to allow for the sufficient generation of SA-dependent defense signals from living cells that are adjacent to apoptotic cells. Nitric oxide (NO) plays an additional role in the regulation of SA/ROS-dependent defense (Trapet et al., 2015). This gaseous molecule can stimulate ROS production and cell death in the absence of SA while preventing excessive ROS production at high cellular SA levels via S-nitrosylation of RBOHD (Yun et al., 2011). Recently, it was shown that pathogen-induced accumulation of NO and ROS promotes the production of azelaic acid, a lipid derivative that primes distal plants for SA-dependent defenses (Wang et al., 2014). Hence, NO, ROS, and SA are intertwined in a complex regulatory network to mount local and systemic resistance against biotrophic pathogens. Interestingly, pathogens with a necrotrophic lifestyle can benefit from ROS/SA-dependent defenses and associated cell death (Govrin and Levine, 2000). For instance, Kabbage et al. (2013) demonstrated that S. sclerotiorum utilizes oxalic acid to repress oxidative defense signaling during initial biotrophic colonization, but it stimulates apoptosis at later stages to advance necrotrophic colonization. Moreover, SA-induced repression of JA-dependent resistance not only benefits necrotrophic pathogens but also hemibiotrophic pathogens after having switched from biotrophy to necrotrophy (Glazebrook, 2005; Pieterse et al., 2009, 2012).Plectosphaerella cucumerina ((P. cucumerina, anamorph Plectosporum tabacinum) anamorph Plectosporum tabacinum) is a filamentous ascomycete fungus that can survive saprophytically in soil by decomposing plant material (Palm et al., 1995). The fungus can cause sudden death and blight disease in a variety of crops (Chen et al., 1999; Harrington et al., 2000). Because P. cucumerina can infect Arabidopsis leaves, the P. cucumerina-Arabidopsis interaction has emerged as a popular model system in which to study plant defense reactions to necrotrophic fungi (Berrocal-Lobo et al., 2002; Ton and Mauch-Mani, 2004; Carlucci et al., 2012; Ramos et al., 2013). Various studies have shown that Arabidopsis deploys a wide range of inducible defense strategies against P. cucumerina, including JA-, SA-, ABA-, and auxin-dependent defenses, glucosinolates (Tierens et al., 2001; Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014), callose deposition (García-Andrade et al., 2011; Gamir et al., 2012, 2014; Sánchez-Vallet et al., 2012), and ROS (Tierens et al., 2002; Sánchez-Vallet et al., 2010; Barna et al., 2012; Gamir et al., 2012, 2014; Pastor et al., 2014). Recent metabolomics studies have revealed large-scale metabolic changes in P. cucumerina-infected Arabidopsis, presumably to mobilize chemical defenses (Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014). Furthermore, various chemical agents have been reported to induce resistance against P. cucumerina. These chemicals include β-amino-butyric acid, which primes callose deposition and SA-dependent defenses, benzothiadiazole (BTH or Bion; Görlach et al., 1996; Ton and Mauch-Mani, 2004), which activates SA-related defenses (Lawton et al., 1996; Ton and Mauch-Mani, 2004; Gamir et al., 2014; Luna et al., 2014), JA (Ton and Mauch-Mani, 2004), and ABA, which primes ROS and callose deposition (Ton and Mauch-Mani, 2004; Pastor et al., 2013). However, among all these studies, there is increasing controversy about the exact signaling pathways and defense responses contributing to plant resistance against P. cucumerina. While it is clear that JA and ethylene contribute to basal resistance against the fungus, the exact roles of SA, ABA, and ROS in P. cucumerina resistance vary between studies (Thomma et al., 1998; Ton and Mauch-Mani, 2004; Sánchez-Vallet et al., 2012; Gamir et al., 2014).This study is based on the observation that the disease phenotype during P. cucumerina infection differs according to the inoculation method used. We provide evidence that the fungus follows a hemibiotrophic infection strategy when infecting from relatively low spore densities on the leaf surface. By contrast, when challenged by localized host defense to relatively high spore densities, the fungus switches to a necrotrophic infection program. Our study has uncovered a novel strategy by which plant-pathogenic fungi can take advantage of the early immune response in the host plant.  相似文献   

12.
13.
Effective grain filling is one of the key determinants of grain setting in rice (Oryza sativa). Grain setting defect1 (GSD1), which encodes a putative remorin protein, was found to affect grain setting in rice. Investigation of the phenotype of a transfer DNA insertion mutant (gsd1-Dominant) with enhanced GSD1 expression revealed abnormalities including a reduced grain setting rate, accumulation of carbohydrates in leaves, and lower soluble sugar content in the phloem exudates. GSD1 was found to be specifically expressed in the plasma membrane and plasmodesmata (PD) of phloem companion cells. Experimental evidence suggests that the phenotype of the gsd1-Dominant mutant is caused by defects in the grain-filling process as a result of the impaired transport of carbohydrates from the photosynthetic site to the phloem. GSD1 functioned in affecting PD conductance by interacting with rice ACTIN1 in association with the PD callose binding protein1. Together, our results suggest that GSD1 may play a role in regulating photoassimilate translocation through the symplastic pathway to impact grain setting in rice.Grain filling, a key determinant of grain yield in rice (Oryza sativa), hinges on the successful translocation of photoassimilates from the leaves to the fertilized reproductive organs through the phloem transport system. Symplastic phloem loading, which is one of the main pathways responsible for the transport of photoassimilates in rice, is mediated by plasmodesmata (PD) that connect phloem companion cells with sieve elements and surrounding parenchyma cells (Kaneko et al., 1980; Chonan et al., 1981; Eom et al., 2012). PD are transverse cell wall channels structured with the cytoplasmic sleeve and the modified endoplasmic reticulum desmotubule between neighboring cells (Maule, 2008). A number of proteins affect the structure and functional performance of the PD, which in turn impacts the cell-to-cell transport of small and large molecules through the PD during plant growth, development, and defense (Cilia and Jackson, 2004; Sagi et al., 2005; Lucas et al., 2009; Simpson et al., 2009; Stonebloom et al., 2009). For example, actin and myosin, which link the desmotubule to the plasma membrane (PM) at the neck region of PD, are believed to play a role in regulating PD permeability by controlling PD aperture (White et al., 1994; Ding et al., 1996; Reichelt et al., 1999). Callose deposition can also impact the size of the PD aperture at the neck region (Radford et al., 1998; Levy et al., 2007) and callose synthase genes such as Glucan Synthase-Like7 (GSL7, also named CalS7), GSL8, and GSL12 have been shown to play a role in regulating symplastic trafficking (Guseman et al., 2010; Barratt et al., 2011; Vatén et al., 2011; Xie et al., 2011). Other proteins that have been shown to impact the structure and function of the PD include glycosylphosphatidylinositol (GPI)-anchored proteins, PD callose binding protein1 (PDCB1), which is also associated with callose deposition (Simpson et al., 2009), and LYSIN MOTIF DOMAIN-CONTAINING GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN2, which limits the molecular flux through the PD by chitin perception (Faulkner et al., 2013). Changes in PD permeability can have major consequences for the translocation of photoassimilates needed for grain filling in rice. However, the genes and molecular mechanisms underlying the symplastic transport of photoassimilates remain poorly characterized.Remorins are a diverse family of plant-specific proteins with conserved C-terminal sequences and highly variable N-terminal sequences. Remorins can be classified into six distinct phylogenetic groups (Raffaele et al., 2007). The functions of most remorins are unknown, but some members of the family have been shown to be involved in immune response through controlling the cell-to-cell spread of microbes. StREM1.3, a remorin that is located in PM rafts and the PD, was shown to impair the cell-to-cell movement of a plant virus X by binding to Triple Gene Block protein1 (Raffaele et al., 2009). Medicago truncatula symbiotic remorin1 (MtSYMREM1), a remorin located at the PM in Medicago truncatula, was shown to facilitate infection and the release of rhizobial bacteria into the host cytoplasm (Lefebvre et al., 2010). Overexpression of LjSYMREM1, the ortholog of MtSYMREM1 in Lotus japonicus, resulted in increased root nodulation (Lefebvre et al., 2010; Tóth et al., 2012). Although a potential association between remorins and PD permeability has been proposed (Raffaele et al., 2009), the diversity observed across remorins, plus the fact that remorin mutants generated through different approaches fail to show obvious phenotypes (Reymond et al., 1996; Bariola et al., 2004), have made it challenging to characterize the function of remorins in cell-to-cell transport.In this study, we identified a rice transfer DNA (T-DNA) insertion mutant (grain setting defect1-Dominant [gsd1-D]), with a grain setting-deficient phenotype caused by overexpression of GSD1, a remorin gene with unknown function. GSD1 is expressed specifically in phloem companion cells and is localized in the PD and PM. We provide evidence to show that overexpression of GSD1 leads to deficient grain setting in rice, likely as a consequence of reduced sugar transport resulting from decreased PD permeability in phloem companion cells.  相似文献   

14.
15.
Using Arabidopsis (Arabidopsis thaliana) seedlings, we identified a range of small fluorescent probes that entered the translocation stream and were unloaded at the root tip. These probes had absorbance/emission maxima ranging from 367/454 to 546/576 nm and represent a versatile toolbox for studying phloem transport. Of the probes that we tested, naturally occurring fluorescent coumarin glucosides (esculin and fraxin) were phloem loaded and transported in oocytes by the sucrose transporter, AtSUC2. Arabidopsis plants in which AtSUC2 was replaced with barley (Hordeum vulgare) sucrose transporter (HvSUT1), which does not transport esculin in oocytes, failed to load esculin into the phloem. In wild-type plants, the fluorescence of esculin decayed to background levels about 2 h after phloem unloading, making it a suitable tracer for pulse-labeling studies of phloem transport. We identified additional probes, such as carboxytetraethylrhodamine, a red fluorescent probe that, unlike esculin, was stable for several hours after phloem unloading and could be used to study phloem transport in Arabidopsis lines expressing green fluorescent protein.The phloem of higher plants consists of a series of longitudinally arranged sieve elements (SEs), companion cells (CCs), and associated parenchyma elements (Heo et al., 2014). The SEs translocate a diverse range of solutes, proteins, and RNAs from source to sink organs and perform key roles in solute delivery and signaling (Turgeon and Wolf, 2009; Ham and Lucas, 2014). The phloem is a delicate tissue, and examining its structure and function has proven to be a difficult task (Knoblauch and Oparka, 2012; Truernit, 2014). Arguably, the most reliable way to assess the rate of phloem transport in different organs is by using radiolabeled solutes derived photosynthetically from 14CO2 (Kölling et al., 2013). In parallel, autoradiography provides a valuable means of imaging the distribution of radiolabeled solutes in different tissues (Housley and Fisher, 1975; Kölling et al., 2013). However, both of these methods are time consuming and limited by resolution. In the last decade, the use of fluorescent tracers has become prominent, allowing phloem transport to be imaged in living SEs with significantly improved resolution above autoradiography (Knoblauch and Oparka, 2012). Importantly, these probes cannot be used as substrates for Suc loading, which in many species, occurs by active, carrier-mediated transport (Turgeon and Wolf, 2009).Schumacher (1933) was the first plant biologist, to our knowledge, to study phloem transport using the fluorescent molecule fluorescein. Since then, however, only a few additional phloem-mobile probes have been discovered. Two such probes are carboxyfluorescein (CF; Grignon et al., 1989; Oparka et al., 1994) and 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS; Wright and Oparka, 1996). When applied in the ester (acetate) form, these probes are phloem mobile, although the exact mechanism by which they enter the phloem is unknown. In the case of CF, it is possible that this probe diffuses into the phloem and is retained in SEs by ion trapping (Wright and Oparka, 1996), a characteristic that it may share with many phloem-mobile herbicides (Hsu and Kleier, 1996). In contrast, HPTS is a highly charged molecule that should not cross membranes (Wright and Oparka, 1996), but it enters the phloem readily. Despite a lack of understanding of how these probes are loaded into the phloem, they have been used extensively in monitoring phloem transport (Knoblauch and van Bel, 1998). They have also found use in imaging symplastic pathways after unloading (Oparka et al., 1994; Roberts et al., 1997; Savage et al., 2013) and identifying symplastic domains in developing tissues (Gisel et al., 1999; Stadler et al., 2005). However, both CF and HPTS emit in the green spectrum, restricting their use for imaging movement in cells that express GFP as a reporter.The limited number of existing probes for phloem transport prompted us to explore unique small molecules differing in excitation and emission spectra as potential tracers. Using an Arabidopsis (Arabidopsis thaliana) seedling screen, we tested the phloem mobility of several small-molecule probes. In addition, we explored the use of esculin as a phloem-mobile tracer. Esculin is a fluorescent coumarin glucoside that is transported in oocytes by AtSUC2 (Sivitz et al., 2007), the major Suc transporter that loads the phloem in Arabidopsis (Gottwald et al., 2000). Here, we describe the development and application of a range of probes for monitoring phloem transport. These small probes cover absorbance/emission maxima ranging from 367/454 to 546/576 nm, allowing them to be used on plant material expressing different fluorescent reporter proteins. We describe the properties of these probes and show how they can be used in both pulse- and dual-labeling studies of phloem transport.  相似文献   

16.
Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem.Plant viruses use the host preexisting transport routes to propagate infection to the whole plant. After replication in the initially infected cells, viruses move cell to cell through plasmodesmata (PD) and start a new round of replication in the newly infected cells. This cycle is repeated until viruses reach vascular tissues, where they enter into the conducting tubes for systemic movement. Several studies have indicated that plant viruses are passively transported along the source-to-sink flow of photoassimilates and thus are believed to move systemically through the phloem (for review, see Hipper et al., 2013).The conducting tube of the phloem is the sieve element. The mature sieve element is enucleated and relies on the associated companion cells for the maintenance of its physiological function (Fisher et al., 1992). The specialized PD connecting one sieve element with one companion cell is called the pore plasmodesmal unit (PPU). Different from the other PDs, PPUs are always branched on the companion cell side but have only one channel on the sieve element side (Oparka and Turgeon, 1999). It is believed that the loading and uploading of viral material during phloem transport are through PPUs. Even though the size exclusion limit of PPUs (Kempers and Bel, 1997) is larger than that of the other PDs (Wolf et al., 1989; Derrick et al., 1990), PPUs should not allow, in their native state, virions or viral ribonucleoprotein (vRNP) complexes to pass through. It is thus believed that specific interactions between virus and host factors are required to allow the viral entity to go through. For instance, the movement protein of Cucumber mosaic virus (CMV) is targeted to PPUs (Blackman et al., 1998), suggesting that this viral protein modifies the size exclusion limit of PPUs and helps viral entry into sieve elements.Most plant viruses are assumed to move systemically through the phloem as virions. This assumption is based on the observation that Coat Protein (CP) deletions debilitating virus assembly prevent systemic infection (Brault et al., 2003; Zhang et al., 2013; Hipper et al., 2014). Some investigations showed the actual presence of virions in sieve elements. This is the case for the icosahedral Tobacco ringspot virus (Halk and McGuire, 1973), Carrot red leaf virus (Murant and Roberts, 1979), Potato leaf roll virus (Shepardson et al., 1980), and Beet western yellows virus (Hoefert, 1984). In addition, virions also were observed in phloem sap, such as the icosahedral CMV (Requena et al., 2006) and the rigid rod-shaped Cucumber green mottle mosaic virus (Simón-Buela and García-Arenal, 1999). Some viruses also are believed to move as ribonucleic protein (RNP) complexes, since systemic movement was observed in CP mutants where virion assembly was hindered. For instance, Tobacco rattle virus, Potato mop-top virus, Brome mosaic virus, and Tomato bushy stunt virus can still move systemically when the CP gene has been deleted from the viral genome (Swanson et al., 2002; Savenkov et al., 2003; Gopinath and Kao, 2007; Manabayeva et al., 2013). For potyviruses, it is still not clear if long-distance transport involves exclusively viral particles or if vRNP complexes also are implicated (Dolja et al., 1994, 1995; Cronin et al., 1995; Schaad et al., 1997; Kasschau and Carrington, 2001; Rajamaki and Valkonen, 2002). But whether virions or vRNP complexes are involved in viral movement, the full nature of the viral entity being implicated has not been defined.Xylem also is used for systemic infection of viruses, but its importance in viral transport generally has been overlooked. Vessel elements are the building blocks of xylem vessels, which constitute the major part of the water-upward-transporting system in a plant. The side walls of mature vessel elements contain pits, which are areas lacking a secondary cell wall; the end walls of the mature vessel elements are removed, and the openings are called perforation plates (Roberts and McCann, 2000). CP or virions of some plant viruses of all different shapes have been detected in the xylem vessels and/or guttation fluid, suggesting that these viruses may move systemically through xylem vessels. For example, the CP of the icosahedral Tomato bushy stunt virus (Manabayeva et al., 2013) and Rice yellow mottle virus (Opalka et al., 1998), the CP of the rigid rod-shaped Soilborne wheat mosaic virus (Verchot et al., 2001) and Cucumber green mottle mosaic virus (Moreno et al., 2004), and the flexuous rod-shaped Potato virus X (PVX; Betti et al., 2012) were detected in xylem vessels. Colocalization of anti-Rice yellow mottle virus antibodies and a cell wall marker for cellulosic β-(1-4)-d-glucans over vessel pit membranes suggests that the pit membranes might be a pathway for virus migration between vessels (Opalka et al., 1998). Moreover, flexuous rod-shaped virions of Zucchini yellow mosaic virus were found in both xylem vessels of root tissue and the guttation fluid (French and Elder, 1999). Finally, icosahedral Brome mosaic virus (Ding et al., 2001) and rigid rod-shaped Tomato mosaic virus and Pepper mild mottle virus (French et al., 1993) virions were found in guttation fluid. Guttation fluid originates from xylem exudate, indicating that these plant viruses can move through xylem within the infected plant. The above studies, however, mainly relied on electron microscopy and infection assays and may have missed the presence of other viral components that might be involved in transport.Turnip mosaic virus (TuMV) is a positive-strand RNA virus belonging to the family Potyviridae, genus Potyvirus, which contains around 30% of the currently known plant viruses and causes serious diseases in numerous crops (Shukla et al., 1994). Potyviruses are nonenveloped, flexuous rod-shaped particles of 680 to 900 nm in length and 11 to 13 nm in diameter. The genomic approximately 10-kb RNA encodes a polyprotein, which is processed into at least 11 mature proteins. TuMV remodels cellular membranes into viral factories, which are intracellular compartments involved in viral replication and movement. These compartments take the form of vesicles of approximately 100 nm in diameter originating from the endoplasmic reticulum (Grangeon et al., 2012). These vesicles contain viral RNA (vRNA) and viral and host proteins involved in vRNA replication (Beauchemin et al., 2007; Beauchemin and Laliberté, 2007; Dufresne et al., 2008; Huang et al., 2010; Grangeon et al., 2012). The viral membrane 6K2 protein is involved in the membrane alterations and vesicle production (Beauchemin et al., 2007). The membrane-bound replication complexes can move intracellularly and cell to cell (Grangeon et al., 2013) at a rate of one cell being infected every 3 h (Agbeci et al., 2013). Intercellular trafficking of the replication complex is likely mediated by the PD-localized potyviral proteins Cytoplasmic Inclusion (CI) and P3N-PIPO (for N-terminal Half of P3 fused to the Pretty Interesting Potyviridae ORF; Carrington et al., 1998; Wei et al., 2010; Vijayapalani et al., 2012) as well as CP (Dolja et al., 1994, 1995), Viral Protein genome-linked (VPg; Nicolas et al., 1997; Rajamaki and Valkonen, 1999, 2002), and Helper Component-Proteinase (HC-Pro; Cronin et al., 1995; Kasschau et al., 1997; Rojas et al., 1997; Kasschau and Carrington, 2001), which are involved in both cell-to-cell and vascular movement.It is expected that, ultimately, TuMV reaches the vascular tissues of the plant, but how and under what form it is released into the conducting tubes are not known. To further understand viral spread and systemic movement, we investigated the distribution of 6K2-tagged TuMV factories in all of the leaf and stem tissues other than the epidermal cells. We found TuMV factories in all tissues. Interestingly, we observed 6K2-tagged vesicles, containing vRNA and viral replication proteins, in both phloem sieve elements and xylem vessels. We confirmed that TuMV could move systemically through xylem by a so-called stem-girdling assay, which induces cell death of the phloem without affecting xylem integrity. Hence, our study indicates that membrane-associated TuMV replication complexes are involved in the systemic movement of the virus.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号