首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of supported lipid bilayers (SLBs) on glass from giant unilamellar vesicles (GUVs) was studied using fluorescence microscopy. We show that GUV rupture occurs by at least four mechanisms, including 1), spontaneous rupture of isolated GUVs yielding almost heart-shaped bilayer patches (asymmetric rupture); 2), spontaneous rupture of isolated GUVs yielding circular bilayer patches (symmetric rupture); 3), induced rupture of an incoming vesicle when it contacts a planar bilayer edge; and 4), induced rupture of an adsorbed GUV when a nearby GUV spontaneously ruptures. In pathway 1, the dominant rupture pathway for isolated GUVs, GUVs deformed upon adsorption to the glass surface, and planar bilayer patch formation was initiated by rupture pore formation near the rim of the glass-bilayer interface. Expanding rupture pores led to planar bilayer formation in approximately 10-20 ms. Rupture probability per unit time depended on the average intrinsic curvature of the component lipids. The membrane leaflet adsorbed to the glass surface in planar bilayer patches originated from the outer leaflet of GUVs. Pathway 2 was rarely observed. We surmise that SLB formation is predominantly initiated by pathway 1 rupture events, and that rupture events occurring by pathways 3 and 4 dominate during later stages of SLB formation.  相似文献   

2.
Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of approximately 38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be approximately 3 x 10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.  相似文献   

3.
《Biophysical journal》2021,120(20):4525-4535
We performed a series of molecular dynamics simulations of cholesterol (Chol) in nonoxidized 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) bilayer and in binary mixtures of PLPC-oxidized-lipid-bilayers with 0–50% Chol concentration and oxidized lipids with hydroperoxide and aldehyde oxidized functional groups. From the 60 unbiased molecular dynamics simulations (total of 161 μs), we found that Chol inhibited pore formation in the aldehyde-containing oxidized lipid bilayers at concentrations greater than 11%. For both pure PLPC bilayer and bilayers with hydroperoxide lipids, no pores were observed at any Chol concentration. Furthermore, increasing cholesterol concentration led to a change of phase state from the liquid-disordered to the liquid-ordered phase. This condensing effect of Chol was observed in all systems. Data analysis shows that the addition of Chol results in an increase in bilayer thickness. Interestingly, we observed Chol flip-flop only in the aldehyde-containing lipid bilayer but neither in the PLPC nor the hydroperoxide bilayers. Umbrella-sampling simulations were performed to calculate the translocation free energies and the Chol flip-flop rates. The results show that Chol’s flip-flop rate depends on the lipid bilayer type, and the highest rate are found in aldehyde bilayers. As the main finding, we shown that Chol stabilizes the oxidized lipid bilayer by confining the distribution of the oxidized functional groups.  相似文献   

4.
Using lysophosphatidylcholine, a curvature-inducing lysolipid, we have isolated a reversible, “stalled pore” phenotype during syncytium formation induced by the p14 fusion-associated small transmembrane (FAST) protein and influenza virus hemagglutinin (HA) fusogens. This is the first evidence that lateral propagation of stable fusion pores leading to syncytiogenesis mediated by diverse viral fusogens is inhibited by promotion of positive membrane curvature in the outer leaflets of the lipid bilayer surrounding intercellular fusion pores.  相似文献   

5.
We have carried out extensive Monte Carlo simulations of the fusion of tense apposed bilayers formed by amphiphilic molecules within the framework of a coarse-grained lattice model. The fusion pathway differs from the usual stalk mechanism. Stalks do form between the apposed bilayers, but rather than expand radially to form an axial-symmetric hemifusion diaphragm of the trans leaves of both bilayers, they promote in their vicinity the nucleation of small holes in the bilayers. Two subsequent paths are observed. 1) The stalk encircles a hole in one bilayer creating a diaphragm comprised of both leaves of the other intact bilayer, which ruptures to complete the fusion pore. 2) Before the stalk can encircle a hole in one bilayer, a second hole forms in the other bilayer, and the stalk aligns and encircles them both to complete the fusion pore. Both pathways give rise to mixing between the cis and trans leaves of the bilayer and allow for transient leakage.  相似文献   

6.
The membrane-lytic peptide melittin has previously been shown to form pores in lipid bilayers that have been described in terms of two different structural models. In the "barrel stave" model the bilayer remains more or less flat, with the peptides penetrating across the bilayer hydrocarbon region and aggregating to form a pore, whereas in the "toroidal pore" melittin induces defects in the bilayer such that the bilayer bends sharply inward to form a pore lined by both peptides and lipid headgroups. Here we test these models by measuring both the free energy of melittin transfer (DeltaG degrees ) and melittin-induced leakage as a function of bilayer elastic (material) properties that determine the energetics of bilayer bending, including the area compressibility modulus (K(a)), bilayer bending modulus (k(c)), and monolayer spontaneous curvature (R(o)). The addition of cholesterol to phosphatidylcholine (PC) bilayers, which increases K(a) and k(c), decreases both DeltaG degrees and the melittin-induced vesicle leakage. In contrast, the addition to PC bilayers of molecules with either positive R(o), such as lysoPC, or negative R(o), such as dioleoylglycerol, has little effect on DeltaG degrees , but produces large changes in melittin-induced leakage, from 86% for 8:2 PC/lysoPC to 18% for 8:2 PC/dioleoylglycerol. We observe linear relationships between melittin-induced leakage and both K(a) and 1/R(o)(2). However, in contrast to what would be expected for a barrel stave model, there is no correlation between observed leakage and bilayer hydrocarbon thickness. All of these results demonstrate the importance of bilayer material properties on melittin-induced leakage and indicate that the melittin-induced pores are defects in the bilayer lined in part by lipid molecules.  相似文献   

7.
Structure of Sphingomyelin Bilayers: A Simulation Study   总被引:3,自引:1,他引:2       下载免费PDF全文
We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC.  相似文献   

8.
Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.  相似文献   

9.
Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes.  相似文献   

10.
We present experimental and theoretical results of electroporation of small patches of planar lipid bilayers by means of linearly rising current. The experiments were conducted on ~120-μm-diameter patches of planar phospholipid bilayers. The steadily increasing voltage across the bilayer imposed by linearly increasing current led to electroporation of the membrane for voltages above a few hundred millivolts. This method shows new molecular mechanisms of electroporation. We recorded small voltage drops preceding the breakdown of the bilayer due to irreversible electroporation. These voltage drops were often followed by a voltage re-rise within a fraction of a second. Modeling the observed phenomenon by equivalent electric circuits showed that these events relate to opening and closing of conducting pores through the bilayer. Molecular dynamics simulations performed under similar conditions indicate that each event is likely to correspond to the opening and closing of a single pore of about 5 nm in diameter, the conductance of which ranges in the 100-nS scale. This combined experimental and theoretical investigation provides a better quantitative characterization of the size, conductance and lifetime of pores created during lipid bilayer electroporation. Such a molecular insight should enable better control and tuning of electroporation parameters for a wide range of biomedical and biotechnological applications.  相似文献   

11.
Ethanol has a profound impact on biological systems and is moreover used in various medical and nonmedical applications. Its interaction with the lipid part of biological membranes has been the subject of intensive studies, but surprisingly, to our knowledge, no study has examined the influence of ethanol on lipid bilayer nanomechanics. We performed atomic force microscopy-based measurements to assess the influence of ethanol on the nanomechanical properties of fluid supported lipid bilayers. Ethanol significantly reduces membrane stability, bilayer thickness, Young’s modulus, area stretch modulus, and bending stiffness. Altogether, our data suggest that ethanol addition to supported lipid bilayers supports both the hydrophobic and the hydrophilic permeation pathways by a decrease of bilayer thickness and reduced stability, respectively.  相似文献   

12.
Cell-penetrating peptides (CPPs) have recently attracted much interest due to their apparent ability to penetrate cell membranes in an energy-independent manner. Here molecular-dynamics simulation techniques were used to study the interaction of two CPPs: penetratin and the TAT peptide with 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospolipid bilayers shed light on alternative mechanisms by which these peptides might cross biological membranes. In contrast to previous simulation studies of charged peptides interacting with lipid bilayers, no spontaneous formation of transmembrane pores was observed. Instead, the simulations suggest that the peptides may enter the cell by micropinocytosis, whereby the peptides induce curvature in the membrane, ultimately leading to the formation of small vesicles within the cell that encapsulate the peptides. Specifically, multiple peptides were observed to induce large deformations in the lipid bilayer that persisted throughout the timescale of the simulations (hundreds of nanoseconds). Pore formation could be induced in simulations in which an external potential was used to pull a single penetratin or TAT peptide into the membrane. With the use of umbrella-sampling techniques, the free energy of inserting a single penetratin peptide into a DPPC bilayer was estimated to be ∼75 kJmol−1, which suggests that the spontaneous penetration of single peptides would require a timescale of at least seconds to minutes. This work also illustrates the extent to which the results of such simulations can depend on the initial conditions, the extent of equilibration, the size of the system, and the conditions under which the simulations are performed. The implications of this with respect to the current systems and to simulations of membrane-peptide interactions in general are discussed.  相似文献   

13.
Electropermeabilization, an electric field-induced modification of the barrier functions of the cell membrane, is widely used in laboratories and increasingly in the clinic; but the mechanisms and physical structures associated with the electromanipulation of membrane permeability have not been definitively characterized. Indirect experimental observations of electrical conductance and small molecule transport as well as molecular dynamics simulations have led to models in which hydrophilic pores form in phospholipid bilayers with increased probability in the presence of an electric field. Presently available methods do not permit the direct, nanoscale examination of electroporated membranes that would confirm the existence of these structures. To facilitate the reconciliation of poration models with the observed properties of electropermeabilized lipid bilayers and cell membranes, we propose a scheme for characterizing the stages of electropore formation and resealing. This electropore life cycle, based on molecular dynamics simulations of phospholipid bilayers, defines a sequence of discrete steps in the electric field-driven restructuring of the membrane that leads to the formation of a head group-lined, aqueous pore and then, after the field is removed, to the dismantling of the pore and reassembly of the intact bilayer. Utilizing this scheme we can systematically analyze the interactions between the electric field and the bilayer components involved in pore initiation, construction and resealing. We find that the pore creation time depends strongly on the electric field gradient across the membrane interface and that the pore annihilation time is at least weakly dependent on the magnitude of the pore-initiating electric field and, in general, much longer than the pore creation time.  相似文献   

14.
Understanding cellular membrane processes is critical for the study of events such as viral entry, neurotransmitter exocytosis, and immune activation. Supported lipid bilayers are commonly used to model these membrane processes experimentally. Despite the relative simplicity of such a system, many important structural and dynamic parameters are not experimentally observable with current techniques. Computational approaches allow the development of a high-resolution model of bilayer processes. We have performed molecular dynamics simulations of dimyristoylphosphatidylcholine (DMPC) bilayers to model the creation of bilayer gaps—a common process in bilayer patterning—and to analyze their structure and dynamics. We propose a model for gap formation in which the bilayer edges form metastable micelle-like structures on a nanosecond timescale. Molecules near edges structurally resemble lipids in ungapped bilayers but undergo small-scale motions more rapidly. These data suggest that lipids may undergo rapid local rearrangements during membrane fusion, facilitating the formation of fusion intermediates thought key to the infection cycle of viruses such as influenza, Ebola, and HIV.  相似文献   

15.
The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions.  相似文献   

16.
Adhesion and spreading of negatively charged unilamellar vesicles composed of POPG/POPC and DPPG/DPPC on positively charged self-assembly monolayers of 11-amino-1-undecanethiol were monitored by means of thickness shear mode (TSM) resonators with a fundamental frequency of 5 MHz. Changes of frequency and motional resistance upon vesicle adsorption were recorded as a function of surface charge density and lyotropic phase state of the lipids. From the readout of the TSM resonator, changes of the shape of the vesicles as well as the formation of supported lipid bilayers can be inferred in a quantitative manner. Increasing surface charge densities on the vesicles, which are tunable by the POPG content, led to decreasing frequency and resistance changes. At very high PG content, a lower limit of 3–12 Hz was found, indicative of the formation of planar bilayers due to vesicle rupture induced by the strong electrostatic interaction forces. Vesicles composed of DPPG/DPPC were less susceptible to deformation and rupture, a fact that can be attributed to the higher bending rigidity of DPPG/DPPC liposomes. More than 70 mol% of DPPG were needed to induce adhesion-controlled rupture of surface-attached vesicles, while only 30–50% of POPG were sufficient to form planar lipid bilayers on the quartz.  相似文献   

17.
The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions.  相似文献   

18.
A new simulation method, dissipative particle dynamics, is applied to model biological membranes. In this method, several atoms are united into a single simulation particle. The solubility and compressibility of the various liquid components are reproduced by the simulation model. When applied to a bilayer of phosphatidylethanolamine, the membrane structure obtained matches quantitatively with full atomistic simulations and with experiments reported in the literature. The method is applied to investigate the cause of cell death when bacteria are exposed to nonionic surfactants. Mixed bilayers of lipid and nonionic surfactant were studied, and the diffusion of water through the bilayer was monitored. Small transient holes are seen to appear at 40% mole-fraction C(9)E(8), which become permanent holes between 60 and 70% surfactant. When C(12)E(6) is applied, permanent holes only arise at 90% mole-fraction surfactant. Some simulations have been carried out to determine the rupture properties of mixed bilayers of phosphatidylethanolamine and C(12)E(6). These simulations indicate that the area of a pure lipid bilayer can be increased by a factor 2. The inclusion of surfactant considerably reduces both the extensibility and the maximum stress that the bilayer can withstand. This may explain why dividing cells are more at risk than static cells.  相似文献   

19.
Energetics of pore formation induced by membrane active peptides   总被引:8,自引:0,他引:8  
Lee MT  Chen FY  Huang HW 《Biochemistry》2004,43(12):3590-3599
Antimicrobial peptides are known to form pores in cell membranes. We study this process in model bilayers of various lipid compositions. We use two of the best-studied peptides, alamethicin and melittin, to represent peptides making two types of pores, that is, barrel-stave pores and toroidal pores. In both cases, the key control variable is the concentration of the bound peptides in the lipid bilayers (expressed in the peptide-lipid molar ratio, P/L). The method of oriented circular dichroism (OCD) was used to monitor the peptide orientation in bilayers as a function of P/L. The same samples were scanned by X-ray diffraction to measure the bilayer thickness. In all cases, the bilayer thickness decreases linearly with P/L and then levels off after P/L exceeds a lipid-dependent critical value, (P/L)*. OCD spectra showed that the helical peptides are oriented parallel to the bilayers as long as P/L < (P/L)*, but as P/L increases over (P/L)*, an increasing fraction of peptides changed orientation to become perpendicular to the bilayer. We analyzed the data by assuming an internal membrane tension associated with the membrane thinning. The free energy containing this tension term leads to a relation explaining the P/L-dependence observed in the OCD and X-ray diffraction measurements. We extracted the experimental parameters from this thermodynamic relation. We believe that they are the quantities that characterize the peptide-lipid interactions related to the mechanism of pore formation. We discuss the meaning of these parameters and compare their values for different lipids and for the two different types of pores. These experimental parameters are useful for further molecular analysis and are excellent targets for molecular dynamic simulation studies.  相似文献   

20.
It was previously shown that mutations of integrin α4 chain sites, within putative EF-hand-type divalent cation-binding domains, each caused a marked reduction in α4β1-dependent cell adhesion. Some reports have suggested that α-chain “EF-hand” sites may interact directly with ligands. However, we show here that mutations of three different α4 “EF-hand” sites each had no effect on binding of soluble monovalent or bivalent vascular cell adhesion molecule 1 whether measured indirectly or directly. Furthermore, these mutations had minimal effect on α4β1-dependent cell tethering to vascular cell adhesion molecule 1 under shear. However, EF-hand mutants did show severe impairments in cellular resistance to detachment under shear flow. Thus, mutation of integrin α4 “EF-hand-like” sites may impair 1) static cell adhesion and 2) adhesion strengthening under shear flow by a mechanism that does not involve alterations of initial ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号