首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multifunctional envelope-type nanodevices (MENDs) are very promising non-viral gene delivery vectors because they are biocompatible and enable programmed packaging of various functional elements into an individual nanostructured liposome. Conventionally MENDs have been fabricated by complicated, labor-intensive, time-consuming bulk batch methods. To avoid these problems in MEND fabrication, we adopted a microfluidic chip with a chaotic mixer array on the floor of its reaction channel. The array was composed of 69 cycles of the staggered chaotic mixer with bas-relief structures. Although the reaction channel had very large Péclet numbers (>10(5)) favorable for laminar flows, its chaotic mixer array led to very small mixing lengths (<1.5 cm) and that allowed homogeneous mixing of MEND precursors in a short time. Using the microfluidic chip, we fabricated a double-lamellar MEND (D-MEND) composed of a condensed plasmid DNA core and a lipid bilayer membrane envelope as well as the D-MEND modified with trans-membrane peptide octaarginine. Our lab-on-a-chip approach was much simpler, faster, and more convenient for fabricating the MENDs, as compared with the conventional bulk batch approaches. Further, the physical properties of the on-chip-fabricated MENDs were comparable to or better than those of the bulk batch-fabricated MENDs. Our fabrication strategy using microfluidic chips with short mixing length reaction channels may provide practical ways for constructing more elegant liposome-based non-viral vectors that can effectively penetrate all membranes in cells and lead to high gene transfection efficiency.  相似文献   

2.
This article reports the enhancement of thermal stability involving normal duplex and mutation-carrying DNA duplexes in microchannel laminar flow. The application of an in-house temperature-controllable microchannel-type flow cell is demonstrated for improved discrimination of mismatch base pairs such as A-G and T-G that are difficult to distinguish due to the rather small thermal destabilizations. Enhancement in thermal stability is reflected by an increased thermal melting temperature achieved in microchannel laminar flow as compared with batch reactions. To examine the kinetics and thermodynamics of duplex-coil equilibrium of DNA oligomers, denaturation-renaturation hysteresis curves were measured. The influence of microchannel laminar flow on DNA base mismatch analysis was described from the kinetic and thermodynamic perspectives. An increasing trend was observed for association rate constant as flow rate increased. In contrast, an apparent decrease in dissociation rate constant was observed with increasing flow rate. The magnitudes of the activation energies of dissociation were nearly constant for both the batch and microchannel laminar flow systems at all flow rates. In contrast, the magnitudes of activation energies of association decreased as flow rate increased. These results clearly show how microchannel laminar flow induces change in reaction rate by effecting change in activation energy. We anticipate, therefore, that this approach based on microchannel laminar flow system holds great promise for improved mismatch discrimination in DNA analyses, particularly on single-base-pair mismatch, by pronouncedly enhancing thermal stability.  相似文献   

3.
It is known that interfaces have various impacts on crystallization from a solution. Here, we describe crystallization of acetaminophen using a microflow channel, in which two liquids meet and form a liquid–liquid interface due to laminar flow, resulting in uniform mixing of solvents on the molecular scale. In the anti‐solvent method, the microflow mixing promoted the crystallization more than bulk mixing. Furthermore, increased flow rate encouraged crystal formation, and a metastable form appeared under a certain flow condition. This means that interface management by the microchannel could be a beneficial tool for crystallization and polymorph control.  相似文献   

4.
In order to offer the ability of smaller volumes and high throughput in Lab-On-a-Chip and micro Total Analysis Systems devices, more miniaturized components are needed. Due to a low Reynolds number on the microscale, the mixing process can be particularly troublesome. This problem is compounded by the fact that more miniaturization can be challenging in a microfluidic system. In such a case, electroosmotic (EO) force is an efficient force to perturb low Reynolds number fluid. In this paper, a novel Micro-Electro-Mechanical-Systems (MEMS) based fabrication for microfluidic devices, and a more miniaturized micromixer are presented. The proposed technology process requires the covering of excited electrode patterns by a thin Silicon-Nitride (Si3N4) insulator layer. Fabrication parameters such as Low Pressure Chemical Vapor Deposition (LPCVD) Si3N4 deposition effect, and height of the Phosphor Silicate Glass (PSG) sacrificial layer were investigated for the electroosmotically-driven mixer. Particle tracing for fluid flow was illustrated, the particles were stretched and folded for a long time, which was a proof of chaotic regime. Finite Element Analysis (FEA) revealed that the mixer with covered electrodes provides the high mixing efficiency of above 90% for a 96 μm long microchannel. Using a silicon nitride insulator layer reduces high electric field gradient at sharp corners and edges of the electrodes, leading to the elimination of unwanted electrolyte effects. Thus, the excitation and geometrical parameters were optimized for the micromixer.  相似文献   

5.
The ability to mix aqueous liquids on microsecond time scales, while consuming minimal amounts of sample and maintaining UV-visible optical access to the mixing region, is highly desirable for a range of biophysical studies of fast protein and nucleic acid interactions and folding. We have constructed a laminar coaxial jet mixer that allows the measurement of UV-excited fluorescence from nanoliter and microliter quantities of material, mixed at microsecond rates. The mixer injects a narrow cylindrical stream (radius a < 1 microm) of fluorescent sample into a larger flow of diluting buffer that moves through a capillary (100 microm i.d.) at a speed approximately 20 cm/s, under laminar flow conditions (Re approximately equal to 14). Construction from a fused silica capillary allows the laser excitation (at 266 nm) and detection (at 350 nm) of tryptophan fluorescence at reasonably low working concentrations, without interference from background fluorescence. Using this mixer we have measured sub-millisecond fluorescence quenching kinetics while consuming fluorescent sample at rates no greater than 6 nl/s. Consumption of the diluting buffer is also very modest (approximately 1-3 microl/s) in comparison with other rapid mixer designs.  相似文献   

6.
Simulations of light intensity variation in photobioreactors   总被引:2,自引:0,他引:2  
In photobioreactors, turbulent flow conditions and light gradients frequently occur. Thus, algal cells cultivated in such reactors experience fluctuations in light intensity. This work presents a new method for the calculation of these light-dark patterns. The investigation is focused on temporal and spatial aspects of light patterns which may affect the photosynthetic reaction. The method combines computational fluid dynamics simulations of three-dimensional turbulent single-phase fluid flow with statistical particle tracking and signal analysis. In this way, light-dark phases are derived which affect singular (algal) cells. An example case is presented of a tubular photobioreactor in which static mixers are used for the efficient mixing of liquid and also of gases with liquid. Particle trajectories representing the path of algal cells were analysed to obtain light fluctuations on single cells. Particles were exposed to light-dark phases with frequencies between 3 and 25Hz in a helical mixer at a mean velocity of 0.5ms(-1), which contrasts to the case of a tube without static mixers, where only frequencies of 0.2-3.1Hz were obtained under the same conditions. The simulations show the potential of improving radial flow in a tubular photobioreactor by means of using a static mixer and the usefulness of CFD and trajectory analysis for scale-down/scale-up.  相似文献   

7.
We investigated the flow pattern and mixing behavior of a poly(γ‐glutamic acid) (γ‐PGA) solution in a bioreactor equipped with two Rushton turbines by simulation and experiment. Computational fluid dynamics (CFD) is used to solve the three‐dimensional hydrodynamics in the bioreactor and to obtain the flow patterns and tracer concentration at every point. The flow circulation patterns by inter‐impeller clearance and viscosity and their effects on overall mixing time were studied. Based on the results we can conclude that the impeller clearance should not be larger than 0.2 D for the efficient mixing under non‐aerated condition when the liquid viscosity is above 20 cp, which corresponds to concentrations of 20 g/L or above for γ‐PGA.  相似文献   

8.
Mixing in shaker table beakers is studied using dye dispersion to measure mixing times. Experimental conditions range from the laminar regime into the turbulent mixing. Different flow patterns occurring in the beakers are reported for the mixing. The transition Reynolds number is determined. Rotational speed of the table, volume of material to be mixed, and viscosity of the material are studied as to their effects on mixing time. A graphical mixing time correlation is provided which is useful for the translation of mixing from laboratory scale to pilot scale.  相似文献   

9.
Sperm viability in aquatic species is increasingly being evaluated by motility analysis via computer-assisted sperm analysis (CASA) following activation of sperm with manual dilution and mixing by hand. User variation can limit the speed and control over the activation process, preventing consistent motility analysis. This is further complicated by the short interval (i.e., less than 15 s) of burst motility in these species. The objectives of this study were to develop a staggered herringbone microfluidic mixer to: 1) activate small volumes of Danio pearl zebrafish (Danio albolineatus) sperm by rapid mixing with diluent, and 2) position sperm in a viewing chamber for motility evaluation using a standard CASA system. A herringbone micromixer was fabricated in polydimethylsiloxane (PDMS) to yield high quality smooth surfaces. Based on fluorescence microscopy, mixing efficiency exceeding 90% was achieved within 5 s for a range of flow rates (from 50 to 250 μL/h), with a correlation of mixing distances and mixing efficiency. For example, at the nominal flow rate of 100 μL/h, there was a significant difference in mixing efficiency between 3.5 mm (75 ± 4%; mean ± SD) and 7 mm (92 ± 2%; P = 0.002). The PDMS micromixer, integrated with standard volumetric slides, demonstrated activation of fresh zebrafish sperm with reduced user variation, greater control, and without morphologic damage to sperm. Analysis of zebrafish sperm viability by CASA revealed a statistically higher motility rate for activation by micromixing (56 ± 4%) than manual activation (45 ± 7%; n = 5, P = 0.011). This micromixer represented a first step in streamlining methods for consistent, rapid assessment of sperm quality for zebrafish and other aquatic species. The capability to rapidly activate sperm and consistently measure motility with CASA using the PDMS micromixer described herein will improve studies of germplasm physiology and cryopreservation.  相似文献   

10.
Computational investigations of flow mixing and oxygen transfer characteristics in an intravenous membrane oxygenator (IMO) are performed by direct numerical simulations of the conservation of mass, momentum, and species equations. Three-dimensional computational models are developed to investigate flow-mixing and oxygen-transfer characteristics for stationary and pulsating balloons, using the spectral element method. For a stationary balloon, the effect of the fiber placement within the fiber bundle and the number of fiber rings is investigated. In a pulsating balloon, the flow mixing characteristics are determined and the oxygen transfer rate is evaluated. For a stationary balloon, numerical simulations show two well-defined flow patterns that depend on the region of the IMO device. Successive increases of the Reynolds number raise the longitudinal velocity without creating secondary flow. This characteristic is not affected by staggered or non-staggered fiber placement within the fiber bundle. For a pulsating balloon, the flow mixing is enhanced by generating a three-dimensional time-dependent flow characterized by oscillatory radial, pulsatile longitudinal, and both oscillatory and random tangential velocities. This three-dimensional flow increases the flow mixing due to an active time-dependent secondary flow, particularly around the fibers. Analytical models show the fiber bundle placement effect on the pressure gradient and flow pattern. The oxygen transport from the fiber surface to the mean flow is due to a dominant radial diffusion mechanism, for the stationary balloon. The oxygen transfer rate reaches an asymptotic behavior at relatively low Reynolds numbers. For a pulsating balloon, the time-dependent oxygen-concentration field resembles the oscillatory and wavy nature of the time-dependent flow. Sherwood number evaluations demonstrate that balloon pulsations enhance the oxygen transfer rate, even for smaller flow rates.  相似文献   

11.
Helical-blade solids mixers have a large potential as bioreactors for solid-state fermentation (SSF). Fundamental knowledge of the flow and mixing behavior is required for robust operation of these mixers. In this study predictions of a discrete particle model were compared to experiments with colored wheat grain particles and positron emission particle tracking (PEPT) measurements. In the discrete particle model individual movements of particles were calculated from interaction forces. It was concluded that the predicted overall flow behavior matched well with the PEPT measurements. Differences between the model predictions and the experiments with wheat grains were found to be due to the assumption that substrate particles were spherical, which was in the model. Model simulations and experiments with spherical green peas confirmed this. The mixing in the helical-blade mixer could be attributed to (1) the transport of particles up and down in the interior of the mixer, and (2) dispersion or micro-mixing of particles in the top region of the mixer. It appeared that the mixing rate scaled linearly with the rotation rate of the blade, although the average particle velocity did not scale proportionally. It may be that the flow behavior changes as a function of the rotation rate (e.g., changing thickness of the top region); further study is required to confirm this. To increase the mixing performance of the mixer, a larger blade or a change in the shape of the mixer (larger top surface/volume ratio) is recommended.  相似文献   

12.
BACKGROUND: Flow cytometry is a potentially powerful tool to analyze the kinetics of ligand binding, cell response and molecular assembly. The difficulty in adding reactant to cells, achieving adequate mixing, delivering those cells to the laser focal point and establishing stable flow, has historically limited flow cytometry to systems with reactions times longer than 5 s. With the advent of automated syringes and flow injection methods, sample injection times shorter than 1 s have become routine. However, an inherent problem in acquiring time courses starting under 1 s is that rapid sample introduction through the flow tip to the detection point perturbs laminar flow. The purpose of this work was to determine if stable flow could be reestablished more quickly if the sheath flow was reduced during sample introduction, returning to normal sheath and sample rates afterward. METHODS: We used programmable syringes and valves to control sample mixing as well as sheath and sample delivery through the flow tip to the detection point for stream-in-air detection. Stable flow was monitored by mean particle fluorescence during sample introduction. RESULTS: With no sheath reduction, stable flow recovered after more than 1 s. By reducing sheath flow during the short period (300 msec) of sample mixing and delivery, stable laminar flow recovered within 200 msec. CONCLUSIONS: This use of automated syringes to control both sheath and sample flow provides a potential for robust sample handling applicable to kinetic as well as high throughput flow cytometric analysis.  相似文献   

13.
Fluid shear stress due to blood flow can modulate functions of endothelial cells (ECs) in blood vessels by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a definite forward direction causes transient activations of many genes that are atherogenic, followed by their down-regulation; laminar shear stress also up-regulates genes that inhibit EC growth. In contrast, disturbed flow patterns with little forward direction cause sustained activations of these atherogenic genes and enhancements of EC mitosis and apoptosis. In straight parts of the arterial tree, laminar shear stress with a definite forward direction has anti-atherogenic effects. At branch points, the complex flow patterns with little net direction are atherogenic. Thus, the direction of shear stress has important physiological and pathophysiological effects on vascular ECs.  相似文献   

14.
The effect of fluidic conditions on the bioluminescent detection of ATP in a microfluidic device was surveyed using homemade detector system. The bioluminescent reaction of ATP was directly affected by the retention time and flow rates of the solutions in this diffusion-based mixing and reaction system due to the laminar flow in the microchannel. ATP and enzyme solutions were separately injected into the microfluidic device at different flow rates through 3 inlet ports. The ATP solution was injected through the middle port, while the enzyme solution was injected in the two remaining ports. When the ratio of ATP to enzyme solution was fixed, the optimum flow rates of enzyme, ATP, and enzyme solution was 3.5, 8.0, and 3.5 μL/min, respectively. The optimal total flow rate was 15 μL/min. The detection limit for the concentration of ATP at optimal conditions was less than 10−7 M.  相似文献   

15.
通过将沙棘(Hippophae rhamnoides L.)与3种杨树品种(小黑杨(Populus cv.“Xiaohei”),昭林6号杨(P.cv.“Zhaolin06”)和欧美杨64号(P.euramericane cv.“N3016”))的人工林分别按株混和行混两种方式进行混交实验,研究了固氮植物沙棘对亚湿润干旱区的杨树人工林生长和生产力的影响。研究结果表明:无论哪一种杨树品种或混交方式,沙棘与杨树混交后能显著地增加杨树人工林的生长量,林分平均胸径增加6%~38%,林分平均高增加8%~23%。在株混方式中,杨树地上部生物量大于杨树纯林的地上部生物量。但是在行混方式中,呈现相反的规律,这是由于行混方式中单位面积的杨树株数少。无论哪一种杨树品种或混交方式,杨树与沙棘混交林的地上部净生产力大于杨树纯林的地上部生产力。在株混和行混两种方式中,沙棘占总地上部净生产力的比例分别为20%和41%,但草本植物所占的比重很小。  相似文献   

16.
通过将沙棘(Hippophae rhamnoides L.)与3种杨树品种(小黑杨(Populus cv.“Xiaohei”)昭林6号杨(P.cv.“Zhaolin06”)和欧美杨64号(P.euramericane cv.“N3016”))的人工林分别按株混两种方式进行混交实验,研究了固氮植物沙棘对亚湿润干旱区的杨树人工林生长和生产力的影响。研究结果表明:无论哪一种杨树品种或混交方式,沙棘与杨树  相似文献   

17.
We used chloroplast polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) and chloroplast microsatellites to assess the structure of genetic variation and postglacial history across the entire natural range of the common ash (Fraxinus excelsior L.), a broad-leaved wind-pollinated and wind-dispersed European forest tree. A low level of polymorphism was observed, with only 12 haplotypes at four polymorphic microsatellites in 201 populations, and two PCR-RFLP haplotypes in a subset of 62 populations. The clear geographical pattern displayed by the five most common haplotypes was in agreement with glacial refugia for ash being located in Iberia, Italy, the eastern Alps and the Balkan Peninsula, as had been suggested from fossil pollen data. A low chloroplast DNA mutation rate, a low effective population size in glacial refugia related to ash's life history traits, as well as features of postglacial expansion were put forward to explain the low level of polymorphism. Differentiation among populations was high (GST= 0.89), reflecting poor mixing among recolonizing lineages. Therefore, the responsible factor for the highly homogeneous genetic pattern previously identified at nuclear microsatellites throughout western and central Europe (Heuertz et al. 2004) must have been efficient postglacial pollen flow. Further comparison of variation patterns at both marker systems revealed that nuclear microsatellites identified complex differentiation patterns in south-eastern Europe which remained undetected with chloroplast microsatellites. The results suggest that data from different markers should be combined in order to capture the most important genetic patterns in a species.  相似文献   

18.
19.
Simulated negative staining patterns of collagen fibrils were prepared for visual display by a graphical procedure in which amino acid side-chains along the staggered molecules were weighted according to their stain-excluding capacity. The simulated patterns were then compared directly with electron-optical images of collagen fibrils negatively stained with sodium phosphotungstate or lithium tungstate. These visual comparisons confirm previous observations that satisfactory matching occurs when side-chains are weighted according to their ‘bulkiness’ (average cross-sectional area or ‘plumpness’). Optimal matching at the edges of the overlap zones occurred when a hairpin-like conformation was assumed for the N-terminal telopeptides and a condensed conformation for the hydrophobic part of the C-terminal telopeptides. The negative staining pattern is known to include some element of positive staining; visual matching suggests that this additional uptake of positive staining ions occurs predominantly in the more accessible gap zone in a fibril D-period. A slight mismatching between observed and simulated patterns can be understood if the gap zone suffers greater axial shrinkage than the overlap zone when specimens are prepared for electron microscopy.  相似文献   

20.
Biomaterial scaffolds play an important role in maintaining the viability and biological functions of highly metabolic hepatocytes in liver tissue engineering. One of the major challenges involves building a complex microchannel network inside three-dimensional (3D) scaffolds for efficient mass transportation. Here we presented a biomimetic strategy to generate a microchannel network within porous biomaterial scaffolds by mimicking the vascular tree of rat liver. The typical parameters of the blood vessels were incorporated into the biomimetic design of the microchannel network such as branching angle and diameter. Silk fibroin-gelatin scaffolds with biomimetic vascular tree were fabricated by combining micromolding, freeze drying and 3D rolling techniques. The relationship between the micro-channeled design and flow pattern was revealed by a flow experiment, which indicated that the scaffolds with biomimetic vascular tree exhibited unique capability in improving mass transportation inside the 3D scaffold. The 3D scaffolds, preseeded with primary hepatocytes, were dynamically cultured in a bioreactor system. The results confirmed that the pre-designed biomimetic microchannel network facilitated the generation and expansion of hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号