首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Priming of insulin secretory granules for release requires intragranular acidification and depends on vesicular Cl-fluxes, but the identity of the chloride transporter/ion channel involved is unknown. We tested the hypothesis that the chloride transport protein ClC-3 fulfills these actions in pancreatic β cells. In ClC-3−/− mice, insulin secretion evoked by membrane depolarization (high extracellular K+, sulfonylureas), or glucose was >60% reduced compared to WT animals. This effect was mirrored by a 80% reduction in depolarization-evoked β cell exocytosis (monitored as increases in cell capacitance) in single ClC-3−/− β cells, as well as a 44% reduction in proton transport across the granule membrane. ClC-3 expression in the insulin granule was demonstrated by immunoblotting, immunostaining, and negative immuno-EM in a high-purification fraction of large dense-core vesicles (LDCVs) obtained by phogrin-EGFP labeling. The data establish the importance of granular Cl fluxes in granule priming and provide direct evidence for the involvement of ClC-3 in the process.  相似文献   

2.
Summary The solid-phase synthesis andin vitro assays on the glucose-induced insulin secretion from rat pancreatic islets of Langerhans with six new chimeric peptides were performed. All the peptides were built up of the N-terminal galanin (GAL) fragment or its analogues, linked to the C-terminal portion of substance P (SP) analogues or scyliorhinin I (SCY-I) analogues. Two strong antagonists of the inhibitory effect of galanin on the glucose-induced insulin release were found: [cycloleucine4]GAL(1–13)-SP(5–11)-amide and GAL(1–13)-[L-norleucine10]SCY-I(3–10)-amide.  相似文献   

3.
4.
The solid-phase synthesis and in vitro assays on the glucose-induced insulin secretion from rat pancreatic islets of Langerhans with six new chimeric peptides were performed. All the peptides were built up of the N-terminal galanin (GAL) fragment or its analogues, linked to the C-terminal portion of substance P (SP) analogues or scyliorhinin I (SCY-I) analogues. Two strong antagonists of the inhibitory effect of galanin on the glucose-induced insulin release were found: [cycloleucine4]GAL(1-13)-SP(5-11)-amide and GAL(1-13)-[L-norleucine10]SCY-I(3-10)-amide.  相似文献   

5.
目的探讨干预脂毒性改善糖尿病大鼠胰岛分泌功能及氧化应激损害的机制。方法将大鼠分为4组①正常组(NC),全程普通饲料喂养;②高脂组(HF),全程高脂饲料喂养。糖尿病组,高脂饲料喂养8周后腹腔注射低剂量STZ(30mg/kg),48h后行OGTT试验判断成模情况后分组。③糖尿病对照组(DM),不给予药物干预;④血脂干预组(SIM),灌胃辛伐他汀5mg/(kg.d)4周干预脂毒性。通过免疫组化染色观察胰岛B、A细胞形态学特点,RT-PCR测定胰腺内胰岛素原mRNA表达水平,DHE荧光染色检测胰岛中活性氧化产物ROS水平。结果与糖尿病对照组相比,干预脂毒性4周后血清胆固醇(TC)和甘油三酯(TG)水平分别下降了22.9%(P〈0.01)和57.0%(P〈0.05)。OGTT血糖水平均显著下降(P〈0.01)。胰岛中B细胞相对量是对照组的2.6倍(P〈0.01),B细胞胞质内胰岛素水平增加了26.5%(P〈0.05),胰岛素原mRNA表达升高18.3%(P〈0.01);A细胞相对量减少了50%(P〈0.01)。血清丙二醛(MDA)水平和胰腺中ROS表达显著下降。结论辛伐他汀干预脂毒性4周可以显著改善糖尿病大鼠胰岛分泌功能和氧化应激损害。  相似文献   

6.
The nature of the action of the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) on hormone release from isolated islets was investigated. We found that glucose-induced insulin release was potentiated by L-NAME in the absence or presence of diazoxide, a potent channel opener, as well as in the presence of diazoxide plus a depolarizing concentration of K+. At a low, physiological glucose concentration L-NAME did not influence insulin secretion induced by K+ but inhibited glucagon secretion. L-arginine-induced insulin release was potentiated by L-NAME. This potentiation was observed also in the presence of K+ plus diazoxide. Further, glucagon release induced by L-arginine as well as by L-arginine plus K+ and diazoxide was suppressed by L-NAME. The results strongly suggest that the L-NAME-induced potentiation of insulin secretion in response to glucose or L-arginine as well as the inhibitory effects on glucagon secretion are largely mediated by L-NAME directly suppressing islet NOS activity. Hence NO apparently affects insulin and glucagon secretion independently of membrane depolarization events.  相似文献   

7.
8.
Cytokine-induced damage may contribute to destruction of insulin-secreting beta-cells in islets of Langerhans during autoimmune diabetes. There is considerable controversy (i) whether human and rat islets respond differently to cytokines, (ii) the extent to which cytokine damage is mediated by induction of nitric oxide formation, and (iii) whether the effects of nitric oxide on islets can be distinguished from those of reactive oxygen species or peroxynitrite. We have analyzed rat and human islet responses in parallel, 48 h after exposure to the nitric oxide donor S-nitrosoglutathione, the mixed donor 3-morpholinosydnonimine, hypoxanthine/xanthine oxidase, peroxynitrite, and combined cytokines (interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma). Insulin secretory response to glucose, insulin content, DNA strand breakage, and early-to-late stage apoptosis were recorded in each experiment. Rat islet insulin secretion was reduced by S-nitrosoglutathione or combined cytokines, but unexpectedly increased by peroxynitrite or hypoxanthine/xanthine oxidase. Effects on human islet insulin secretion were small; cytokines and S-nitrosoglutathione decreased insulin content. Both rat and human islets showed significant and similar levels of DNA damage following all treatments. Apoptosis in neonatal rat islets was increased by every treatment, but was at a low rate in adult rat or human islets and only achieved significance with cytokine treatment of human islets. All cytokine responses were blocked by an arginine analogue. We conclude: (i) Reactive oxygen species increased and nitric oxide decreased insulin secretory responsiveness in rat islets. (ii) Species differences lie mainly in responses to cytokines, applied at a lower dose and shorter time than in most studies of human islets. (iii) Cytokine effects were nitric oxide driven; neither reactive oxygen species nor peroxynitrite reproduced cytokine effects. (iv) Rat and human islets showed equal susceptibility to DNA damage. (v) Apoptosis was not the preferred death pathway in adult islets. (vi) We have found no evidence of human donor variation in the pattern of response to these treatments.  相似文献   

9.

Background

Deregulation of hypothalamic fatty acid sensing lead to hepatic insulin-resistance which may partly contribute to further impairment of glucose homeostasis.

Methodology

We investigated here whether hypothalamic nitric oxide (NO) could mediate deleterious peripheral effect of central lipid overload. Thus we infused rats for 24 hours into carotid artery towards brain, either with heparinized triglyceride emulsion (Intralipid, IL) or heparinized saline (control rats).

Principal Findings

Lipids infusion led to hepatic insulin-resistance partly related to a decreased parasympathetic activity in the liver assessed by an increased acetylcholinesterase activity. Hypothalamic nitric oxide synthases (NOS) activities were significantly increased in IL rats, as the catalytically active neuronal NOS (nNOS) dimers compared to controls. This was related to a decrease in expression of protein inhibitor of nNOS (PIN). Effect of IL infusion on deregulated hepatic insulin-sensitivity was reversed by carotid injection of non selective NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) and also by a selective inhibitor of the nNOS isoform, 7-Nitro-Indazole (7-Ni). In addition, NO donor injection (L-arginine and SNP) within carotid in control rats mimicked lipid effects onto impaired hepatic insulin sensitivity. In parallel we showed that cultured VMH neurons produce NO in response to fatty acid (oleic acid).

Conclusions/Significance

We conclude that cerebral fatty acid overload induces an enhancement of nNOS activity within hypothalamus which is, at least in part, responsible fatty acid increased hepatic glucose production.  相似文献   

10.

Objective

To investigate the effect of CoenzymeQ10 (CoQ10) on pain severity and cartilage degeneration in an experimental model of rat osteoarthritis (OA).

Materials and Methods

OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) to the knee. Oral administration of CoQ10 was initiated on day 4 after MIA injection. Pain severity was assessed by measuring secondary tactile allodynia using the von Frey assessment test. The degree of cartilage degradation was determined by measuring cartilage thickness and the amount of proteoglycan. The mankin scoring system was also used. Expressions of matrix metalloproteinase-13 (MMP-13), interleukin-1β (IL-1β), IL-6, IL-15, inducible nitric oxide synthase (iNOS), nitrotyrosine and receptor for advanced glycation end products (RAGE) were analyzed using immunohistochemistry.

Results

Treatment with CoQ10 demonstrated an antinociceptive effect in the OA animal model. The reduction in secondary tactile allodynia was shown by an increased pain withdrawal latency and pain withdrawal threshold. CoQ10 also attenuated cartilage degeneration in the osteoarthritic joints. MMP-13, IL-1β, IL-6, IL-15, iNOS, nitrotyrosine and RAGE expressions were upregulated in OA joints and significantly reduced with CoQ10 treatment.

Conclusion

CoQ10 exerts a therapeutic effect on OA via pain suppression and cartilage degeneration by inhibiting inflammatory mediators, which play a vital role in OA pathogenesis.  相似文献   

11.
Photoreceptors undergoing target selection in the optic lobeof Drosophila express a nitric oxide sensitive soluble guanylatecyclase (sGC). At the same time, cells in the target regionof the optic lobe express nitric oxide synthase (NOS). Pharmacologicalinhibition of NOS, NO or sGC leads to disruption of the retinalprojection pattern in vitro, and the extension of individualretinal axons beyond their appropriate targets. The disruptiveeffects of NOS inhibition in vitro are prevented by adding acGMP analog. Mutations in the sGC alpha subunit gene, Gc1, reducesGC expression and attenuate NO-sensitive retinal cGMP productionin the visual system. Although the retinal projection patternis undisturbed in Gc1 mutants, they lack positive phototaxisas adults, suggesting inappropriate connections exist betweenthe photoreceptors and optic lobe interneurons in these flies.Preliminary results show that heat-shock expression of wild-typeGc1 during metamorphosis can restore positive phototaxis insevere Gc1 mutants. These in vivo results support the in vitrofindings that NOS and sGC activity are required to promote theappropriate retinal innervation of the optic lobe.  相似文献   

12.
Abstract: We studied the effect of cultured endothelial cells on the secretion of catecholamines by cultured bovine chromaffin cells. Chromaffin cell catecholamine secretion was stimulated by either boluses of potassium (K+) or the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP). Endothelial cells inhibited the catecholamine release and stimulatory effects of K+ and DMPP. This inhibition increased with time, and in 25 min the initial stimulated secretory response (100%) to 30 m M K+ or 25 μ M DMPP dropped to 45 ± 3% and 53.5 ± 2.3%, respectively. This endothelial cell-induced inhibition was blocked by the nitric oxide synthase inhibitors N -nitro- l -arginine methyl ester ( l -NAME) and N -monoethyl- l -arginine ( l -NMMA), and by the guanylate cyclase inhibitor methylene blue, indicating that the l -arginine/nitric oxide/ cyclic GMP pathway is involved in this endothelial cell-chromaffin cell interaction. In the absence of endothelial cells, incubation of chromaffin cells with l -NAME, l -NMMA, or methylene blue also augmented the secretagogue-induced catecholamine secretion, indicating that nitric oxide from chromaffin cells could be implicated in an autoinhibitory process of catecholamine release. These results provide indirect evidence for the presence of nitric oxide synthase in bovine adrenomedullary chromaffin cells. Our results show that there is an autoinhibitory mechanism of catecholamine release in chromaffin cells and that an additional level of inhibition is observed when cultured vascular endothelial cells are present. These two inhibitory processes may have different origins, but they appear to converge into a common pathway, the l -arginine/nitric oxide synthase/guanylate cyclase pathway.  相似文献   

13.
采用硝普钠为NO供体,造成大鼠胰岛β细胞RIN-m的损伤,通过检测细胞活力、细胞内丙二醛(MAD)含量、总谷胱甘肽(GSH)含量和总超氧化物歧化酶(SOD)活性,探讨石参总黄酮的保护作用和机制。结果显示,石参总黄酮能明显提高损伤细胞的活力,降低细胞内MDA的含量、提高总GSH含量和SOD活力,表明石参总黄酮对NO所致RIN-m细胞的损伤具有保护作用,其机制可能与提高细胞内GSH含量与SOD活力有关。  相似文献   

14.
15.
Resting cells of Corynebacterium nephridii reduce nitrate, nitrite, and nitric oxide to nitrous oxide under anaerobic conditions. Nitrous oxide production from nitrite was optimal from pH 7.0 to 7.4. The stoichiometry of nitrous oxide production from nitrite was 99% of the theoretical-two moles of nitrite was used for each mole of nitrous oxide detected. Hydroxylamine increases gas evolution from nitrite but inhibits the reduction of nitric oxide to nitrous oxide. Hydroxylamine is converted to nitrogenous gas(es) by resting cells only in the presence of nitrite. Under certain conditions nitric oxide, as well as nitrous oxide, was detected.  相似文献   

16.
为探讨胰岛素对神经细胞中神经型一氧化氮合酶(nNOS)的表达及活性的影响,应用流式细胞术、原位杂交、电子自旋共振等技术方法研究胰岛素对PC12细胞中神经型一氧化氮合酶的影响.胰岛素作用PC12细胞9 h 后,神经型一氧化氮合酶的免疫荧光强度显著升高,且呈浓度依赖关系,其最大效应为对照的(155±13)%(P<0.01, n=3, t-test).加入胰岛素(16 mU/L, 6 h)也能够显著上调nNOS mRNA的表达,为对照的(182±13)%(P<0.01, n=3, t-test).另外加入胰岛素(16 mU/L)作用9 h后,神经型一氧化氮合酶的活性也显著升高,为对照的(167±15)%(P<0.01, n=4, t-test).由上述结果可知,胰岛素对PC12细胞的神经型一氧化氮合酶的表达及活性有上调作用.  相似文献   

17.
Altered insulin secretion contributes to the pathogenesis of type 2 diabetes. This alteration is correlated with altered intracellular Ca2+-handling in pancreatic β cells. Insulin secretion is triggered by elevation in cytoplasmic Ca2+ concentration ([Ca2+]cyt) of β cells. This elevation in [Ca2+]cyt leads to activation of Ca2+/calmodulin-dependent protein kinase II (CAMKII), which, in turn, controls multiple aspects of insulin secretion. CaMKII is known to phosphorylate ryanodine receptor 2 (RyR2), an intracellular Ca2+-release channel implicated in Ca2+-dependent steps of insulin secretion. Our data show that RyR2 is CaMKII phosphorylated in a pancreatic β-cell line in a glucose-sensitive manner. However, it is not clear whether any change in CaMKII-mediated phosphorylation underlies abnormal RyR2 function in β cells and whether such a change contributes to alterations in insulin secretion. Therefore, knock-in mice with a mutation in RyR2 that mimics its constitutive CaMKII phosphorylation, RyR2-S2814D, were studied. This mutation led to a gain-of-function defect in RyR2 indicated by increased basal RyR2-mediated Ca2+ leak in islets of these mice. This chronic in vivo defect in RyR2 resulted in basal hyperinsulinemia. In addition, S2814D mice also developed glucose intolerance, impaired glucose-stimulated insulin secretion and lowered [Ca2+]cyt transients, which are hallmarks of pre-diabetes. The glucose-sensitive Ca2+ pool in islets from S2814D mice was also reduced. These observations were supported by immunohistochemical analyses of islets in diabetic human and mouse pancreata that revealed significantly enhanced CaMKII phosphorylation of RyR2 in type 2 diabetes. Together, these studies implicate that the chronic gain-of-function defect in RyR2 due to CaMKII hyperphosphorylation is a novel mechanism that contributes to pathogenesis of type 2 diabetes.  相似文献   

18.
Nitric oxide (NO), delivered by a single addition of S-nitrosoglutathione (GSNO, IC50 = 60–75 μM), causes the prolonged, multi-day suppression of proliferation of asynchronous, logarithmically growing human (hCASMC, two cell strains), and porcine (porCASMC) coronary artery smooth muscle cells. The inhibition is not cytotoxic, but cytostatic and reversible. Transient exposure (>4–12 h) to GSNO is sufficient to elicit prolonged suppression, but a less than 4 h exposure produces little or no inhibition. Unlike porCASMC and rat and rabbit aortic SMC, hCASMC synthesize little cGMP in response to GSNO stimulation, suggesting loss of NO responsive guanylate cyclase in vitro. The guanylate cyclase inhibitor, ODQ, blocks the slight cGMP synthesis induced by GSNO in hCASMC, but does not prevent GSNO suppression of proliferation. These data support a cGMP independent mechanism for NO induced suppression of hCASMC proliferation which may be significant in the treatment of proliferative coronary artery diseases.  相似文献   

19.
The role of reactive oxygen and nitrogen species in local and systemic defense reactions is well documented. NPR1 and TGA1 are key redox-controlled regulators of systemic acquired resistance in plants. NPR1 monomers interact with the reduced form of TGA1, which targets the activation sequence-1 (as-1) element of the promoter region of defense proteins. Here, we report the effect of the physiological nitric oxide donor S-nitrosoglutathione on the NPR1/TGA1 regulation system in Arabidopsis thaliana. Using the biotin switch method, we demonstrate that both NPR1 and TGA1 are S-nitrosylated after treatment with S-nitrosoglutathione. Mass spectrometry analyses revealed that the Cys residues 260 and 266 of TGA1 are S-nitrosylated and S-glutathionylated even at GSNO concentrations in the low micromolar range. Furthermore, we showed that S-nitrosoglutathione protects TGA1 from oxygen-mediated modifications and enhances the DNA binding activity of TGA1 to the as-1 element in the presence of NPR1. In addition, we observed that the translocation of NPR1 into the nucleus is promoted by nitric oxide. Taken together, our results suggest that nitric oxide is a redox regulator of the NPR1/TGA1 system and that they underline the importance of nitric oxide in the plant defense response.  相似文献   

20.
β-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca2+]i), and insulin secretion from β-cells within intact murine islets. In contrast to previous studies performed on single β-cells, neither KP nor GLP-1 affect [Ca2+]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the Gβγ-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the Gβγ activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca2+]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a Gβγ-dependent process that stimulates glucose metabolism without altering Ca2+ activity, while GLP-1 does so, at least partly, through a Gα-dependent pathway that is independent of both metabolism and Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号