共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Maaike H. Oosterveer Theo H. van Dijk Uwe J. F. Tietge Theo Boer Rick Havinga Frans Stellaard Albert K. Groen Folkert Kuipers Dirk-Jan Reijngoud 《PloS one》2009,4(6)
Background
High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated.Methodology/Principal Findings
To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized.Conclusions/Significance
High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes by fish oil prevents from high fat diet-induced hepatic steatosis in mice. 相似文献4.
目的观察胆汁酸G-蛋白偶联受体(Gprotein—coupled receptor for bile acids,TGR5)激动剂齐墩果酸(oleanolic acid,OA)对肥胖小鼠体重及糖、脂代谢的影响,探讨齐墩果酸减轻肥胖小鼠体重的机制。方法建立高脂饮食诱导的肥胖小鼠动物模型,并喂食OA进行干预。动态测定体重及第17周后内脏脂肪、肝脏重量,并进行葡萄糖耐量实验(glucose tolerence test,GTT);肝脏组织石蜡切片HE染色,光镜观察病理变化;Realtime PCR检测肝脏组织糖代谢相关基因的表达及白色脂肪组织脂肪合成酶(fatty acid synthase,FAS)的表达。结果OA减轻肥胖小鼠的体重、内脏脂肪及肝脏的重量;改善肝脏脂质沉积;增强胰岛素敏感性。OA抑制肝脏内葡萄糖-6-磷酸酶(glucose-6-phosphatase,G6Pc)的表达,并下调肥胖小鼠脂肪组织FAS的mRNA水平的表达。结论TGR5激动剂OA能减少高脂诱导的肥胖小鼠的脂肪堆积,其机制可能与OA能改善肥胖小鼠胰岛素抵抗,减少脂质合成有关。 相似文献
5.
The liver plays a central role in maintaining whole body metabolic and energy homeostasis by consuming and producing glucose and fatty acids. Glucose and fatty acids compete for hepatic substrate oxidation with regulation ensuring glucose is oxidized preferentially. Increasing fatty acid oxidation is expected to decrease lipid storage in the liver and avoid lipid-induced insulin-resistance. To increase hepatic lipid oxidation in the presence of glucose, we previously engineered a synthetic glyoxylate shunt into human hepatocyte cultures and a mouse model and showed that this synthetic pathway increases free fatty acid β-oxidation and confers resistance to diet-induced obesity in the mouse model. Here we used ensemble modeling to decipher the effects of perturbations to the hepatic metabolic network on fatty acid oxidation and glucose uptake. Despite sampling of kinetic parameters using the most fundamental elementary reaction models, the models based on current metabolic regulation did not readily describe the phenotype generated by glyoxylate shunt expression. Although not conclusive, this initial negative result prompted us to probe unknown regulations, and malate was identified as inhibitor of hexokinase 2 expression either through direct or indirect actions. This regulation allows the explanation of observed phenotypes (increased fatty acid degradation and decreased glucose consumption). Moreover, the result is a function of pyruvate-carboxylase, mitochondrial pyruvate transporter, citrate transporter protein, and citrate synthase activities. Some subsets of these flux ratios predict increases in fatty acid and decreases in glucose uptake after glyoxylate expression, whereas others predict no change. Altogether, this work defines the possible biochemical space where the synthetic shunt will produce the desired phenotype and demonstrates the efficacy of ensemble modeling for synthetic pathway design. 相似文献
6.
7.
8.
目的:构建能诱导出针对脂肪细胞型脂肪酸结合蛋白(FABP4)特异性中和抗体的疫苗,为高脂诱导下肥胖和胰岛素抵抗的防治新途径提供理论和实验依据。方法:野生型C57BL/6J雌鼠随机分为疫苗组(n=10,高脂饲养)、佐剂组(n=10,高脂饲养)和空白对照组(n=10,普通饲养),分别予以皮下注射生物合成的FABP4蛋白、佐剂和磷酸盐缓冲液,观察比较各组抗体滴度、安全耐受性和体重、摄食量、空腹血糖、胰岛素抵抗指数(HOMA-IR)、糖耐量实验血糖曲线下面积(AUC)等指标。结果:疫苗组小鼠产生了高滴度的FABP4特异性抗体,并于第3轮加强免疫后达到平衡状态。首次免疫16周后,疫苗组小鼠体重高于空白对照组,但明显低于佐剂组(P<0.05);日平均摄食量高于空白对照组(P<0.05),与佐剂组无差异(P>0.05);空腹血糖、HOMA-IR、腹腔葡萄糖耐量实验AUC均明显低于佐剂组(P<0.05),与对照组无统计学差异(P>0.05)。结论:以FABP4作为抗原免疫小鼠,可产生高滴度特异性抗体IgG,有效降低高脂喂养野生型雌性小鼠体重、空腹血糖、HOMA-IR和血糖AUC等指标,为高脂诱导的肥胖和胰岛素抵抗的治疗提供了新的途径和初步证据,可进行深入研究。 相似文献
9.
10.
Masahiko Yamaguchi Satoshi Murakami Tomohiro Yoneda Miki Nakamura Lidan Zhang Akiyoshi Uezumi Sumiaki Fukuda Hiroki Kokubo Kazutake Tsujikawa So-ichiro Fukada 《PloS one》2015,10(9)
Nrf2 is a master regulator of oxidative stresses through the induction of anti-oxidative genes. Nrf2 plays roles in maintaining murine hematopoietic stem cells and fly intestinal stem cells. The canonical Notch signaling pathway is also crucial for maintaining several types of adult stem cells including muscle stem cells (satellite cells). Here, we show that Dll1 induced Nrf2 expression in myogenic cells. In addition, primary targets of Notch signaling, Hesr1 and Hesr3, were involved in the up-regulation of Nrf2 mRNA and expression of its target genes. In vitro, Nrf2 had anti-myogenic and anti-proliferative effects on primary myoblasts. In vivo, although Nrf2-knockout mice showed decreased expression of its target genes in muscle stem cells, adult muscle stem cells of Nrf2-knockout mice did not exhibit the phenotype. Taken together, in muscle stem cells, the Notch-Hesr-Nrf2 axis is a pathway potentially inducing anti-oxidative genes, but muscle stem cells either do not require Nrf2-mediated anti-oxidative gene expression or they have a complementary system compensating for the loss of Nrf2. 相似文献
11.
Background
Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucose intolerance, an early marker of insulin resistance and diabetes.Objectives
The purpose of this study was to identify the precise periods of exposure during which phytoestrogens and dietary soy improve lipid and glucose metabolism. Since intrauterine position (IUP) has been shown to alter sensitivity to endocrine disruptors, we also investigated whether the combination of IUP and fetal exposure to dietary phytoestrogens could potentially affect adult metabolic parameters.Methods
Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet either during gestation, lactation or after weaning. Adiposity and bone mass density was assessed by dual x-ray absorptiometry. Glucose tolerance was assessed by a glucose tolerance test. Blood pressure was examined by the tail-cuff system.Results
Here we show that metabolic improvements are dependent on precise windows of exposure during life. The beneficial effects of dietary soy and phytoestrogens on adiposity were apparent only in animals fed post-natally, while the improvements in glucose tolerance are restricted to animals with fetal exposure to soy. Interestingly, we observed that IUP influenced adult glucose tolerance, but not adiposity. Similar IUP trends were observed for other estrogen-related metabolic parameters such as blood pressure and bone mass density.Conclusion
Our results suggest that IUP and fetal exposure to estrogenic environmental disrupting compounds, such as dietary phytoestrogens, could alter metabolic and cardiovascular parameters in adult individuals independently of adipose gain. 相似文献12.
13.
14.
Acute fasting causes elevated oxidative stress. The current study investigated the effects of the nuclear factor erythoid 2-related factor 2 (Nrf2), the sensor of oxidative stress in cells, on energy homeostasis and liver pathophysiology during fasting. Feed was removed from mice possessing none (Nrf2-null), normal (wild-type, WT), enhanced (Keap1-knockdown, K1-KD), and maximum (hepatocyte-specific Keap1-knockout, K1-HKO) Nrf2 activity in liver for 24 h. Body weight, blood glucose, and blood lipid profiles were similar among mice with graded Nrf2 activity under either fed or fasted conditions. Fasting reduced liver size in mice expressing Nrf2, but not in Nrf2-null mice. Nrf2-null mice accumulated more non-esterified free fatty acids and triglycerides in liver after fasting than the other genotypes of mice. Fatty acids are mainly catabolized in mitochondria, and Nrf2-null mice had lower mitochondrial content in liver under control feeding conditions, which was further reduced by fasting. In contrast, mitochondrial contents in mice with enhanced Nrf2 activity were not affected by fasting. Oxidative stress, determined by staining of free radicals and quantification of malondialdehyde equivalents, was highest in Nrf2-null and lowest in K1-HKO mice after fasting. The exacerbated oxidative stress in livers of Nrf2-null mice is predicted to lead to damages to mitochondria, and therefore diminished oxidation and increased accumulation of lipids in livers of Nrf2-null mice. In summary, the Nrf2-regulated signaling pathway is critical in protecting mitochondria from oxidative stress during feed deprivation, which ensures efficient utilization of fatty acids in livers of mice. 相似文献
15.
Polis Baruh Squillario Margherita Gurevich Vyacheslav Srikanth Kolluru D. Assa Michael Samson Abraham O. 《Neurochemical research》2022,47(5):1255-1268
Neurochemical Research - Alzheimer's disease (AD) is an insidious neurodegenerative disorder representing a serious continuously escalating medico-social problem. The AD-associated progressive... 相似文献
16.
Hong-Ping Guan Joseph L. Goldstein Michael S. Brown Guosheng Liang 《The Journal of biological chemistry》2009,284(36):24644-24652
The accumulation of triglycerides (TG) in the liver, designated hepatic steatosis, is characteristically associated with obesity and insulin resistance, but it can also develop after fasting. Here, we show that fasting-induced hepatic steatosis is under genetic control in inbred mice. After a 24-h fast, C57BL/6J mice and SJL/J mice both lost more than 20% of body weight and ∼60% of total body TG. In C57BL/6J mice, TG accumulated in liver, producing frank steatosis. In striking contrast, SJL/J mice failed to accumulate any hepatic TG even though they lost nearly as much adipose tissue mass as the C57BL/6J mice. Mice from five other inbred strains developed fasting-induced steatosis like the C57BL/6J mice. Measurements of the uptake of free fatty acids (FA) in vivo and in vitro demonstrated that SJL/J mice were protected from steatosis because their heart and skeletal muscle took up and oxidized twice as much FA as compared with C57BL/6J mice. As a result of this muscle diversion, serum-free FA and ketone bodies rose much less after fasting in SJL/J mice as compared with C57BL/6J mice. When livers of SJL/J and C57BL/6J mice were perfused with similar concentrations of FA, the livers took up and esterified similar amounts. We conclude that SJL/J mice express one or more variant genes that lead to enhanced FA uptake and oxidation in muscle, thereby sparing the liver from FA overload in the fasting state.Liver and adipose tissue coordinate metabolic responses to oscillations in nutrient availability (1, 2). In the postprandial state, the liver secretes triglycerides (TG)4 into the blood in very low-density lipoproteins (VLDL). In adipose tissue, lipoprotein lipase hydrolyzes the TG, producing fatty acids (FA) and monoglycerides that enter fat cells for reesterification and storage as TG (1). The activity of adipose tissue lipoprotein lipase is enhanced by the postprandial rise in insulin. At the same time, insulin inhibits lipolysis of stored TG in fat cells, assuring that the TG will be retained in the cells (3).Under fasting conditions, insulin falls and the inhibitory effect of insulin on adipose tissue lipolysis is diminished. The released FA enters the blood and is used as an energy source in liver, heart, and skeletal muscle. In the liver, excess FA are either re-esterified into TG for intracellular storage or oxidized and secreted as ketone bodies, which become the main energy source for the brain. In skeletal muscle during fasting, FA are oxidized to CO2 (1, 2).We (4–6) and others (7) previously reported that livers of mice accumulate large amounts of TG after fasting for 6–24 h. In the current study, we screened 7 strains of inbred mice to study the genetic control of fasting-induced hepatic TG accumulation. Mice from 6 of 7 strains exhibited fasting-induced fatty liver. In the unique mouse strain (SJL/J), hepatic TG failed to accumulate after a 24-h fast even though the SJL/J mice lost amounts of body weight and adipose tissue that were similar to those of the other 6 strains. To trace the mechanism for the difference in hepatic TG accumulation, we conducted extensive comparisons of SJL/J mice and C57BL/6J mice. We provide evidence that mice from both strains release comparable amounts of FA from adipose tissue into blood after fasting. In the SJL/J mice, the bulk of these FA are taken up by muscle and oxidized. In C57BL/6J mice, FA uptake in muscle is comparatively low, and the excess FA are taken up by the liver where they are converted to TG. Thus, genetic control of muscle FA uptake determines the level of hepatic TG accumulation in fasted mice. 相似文献
17.
C. Madhosingh 《Bioscience, biotechnology, and biochemistry》2013,77(7):1233-1238
The effects of temperatures ranging from 10°C to 35°C on sterol and fatty acid production and hydroxymethylglutaryl CoA reductase (EC 1.1,1.34, HMGCoA reductase) activity have been examined. Growth, based on dry weight, was maximal at 25°C to 30°C. Sterol production and the reductase activity were highest at 15°C after 28~32 hr incubation when the total fatty acids were minimal. Fatty acid unsaturation generally increased with decrease in temperature. 相似文献
18.
Yuichi Masuda Nosratola D. Vaziri Shiri Li Aimee Le Mohammad Hajighasemi-Ossareh Lourdes Robles Clarence E. Foster Michael J. Stamos Ismail Al-Abodullah Camillo Ricordi Hirohito Ichii 《PloS one》2015,10(6)
Background
Pancreatic islets are known to contain low level of antioxidants that renders them vulnerable to oxidative stress. Nrf2 is the master regulator of numerous genes, encoding antioxidant, detoxifying, and cytoprotective molecules. Activation of Nrf2 pathway induces up-regulation of numerous genes encoding antioxidant and phase II detoxifying enzymes and related proteins. However, little is known regarding the role of this pathway in human islet cells. The aim was to investigate the effect of Nrf2 activator (dh404, CDDO-9,11-dihydro-trifluoroethyl amide) on human islet cells.Methods
Human islets were obtained from cadaveric donors. After dh404 treatment, Nrf2 translocation, mRNA expression, and protein abundance of its key target gene products were examined. The proportion of dh404-treated or non-treated viable islet beta cells was analyzed using flowcytemetry. The cytoprotective effects against oxidative stress and production of inflammatory mediators, and in vivo islet function after transplantation were determined.Results
Nrf2 nuclear translocation was confirmed by con-focal microscope within 2 hours after treatment, which was associated with a dose-dependent increase in mRNA expression of anti-oxidants, including NQO1, HO-1, and GCLC. Enhanced HO-1 expression in dh404 treated islets was confirmed by Western Blot assay. Islet function after transplantation (2000 IEQ/mouse) to diabetic nude mice was not affected with or without dh404 treatment. After induction of oxidative stress with hydrogen peroxide (200 μM) the proportion of dh404-treated viable islet cells was significantly higher in the dh404-treated than untreated islets (74% vs.57%; P<0.05). Dh404 significantly decreased production of cytokines/chemokines including IL-1β, IL-6, IFN-γ and MCP-1.Conclusion
Treatment of human pancreatic islets with the potent synthetic Nrf2 activator, dh404, significantly increased expression of the key anti-oxidants enzymes, decreased inflammatory mediators in islets and conferred protection against oxidative stress in beta cells. 相似文献19.
Bouchra Ta?b Khalil Bouyakdan Cécile Hryhorczuk Demetra Rodaros Stephanie Fulton Thierry Alquier 《The Journal of biological chemistry》2013,288(52):37216-37229
Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance. 相似文献
20.
目的:氧化应激和炎症反应是NASH进展的关键因素,同时二者之间存在着密切关系,而转录因子Nrf2和NF-kB分别是氧化应激和炎症信号通路的关键调控靶点,因此,研究Nrf2对高脂饮食诱导小鼠肝脏NF-kB信号通路的影响,对探讨NASH进展具有重要的意义。方法:雄性野生型(WT)和Nrf2基因敲除(Nrf2-/-)ICR小鼠各10只,随机分为WT对照组(Control)、Nrf2-/-对照组(KO)、WT高脂饮食组(HFD)和Nrf2-/-高脂饮食组(KOHFD)(n=5)。喂养8周后,观察肝脏光镜下改变,检测肝脏GSH、MDA、TNFα和IL-6水平。Western-Blot检测肝脏NF-kB蛋白表达水平,观察敲除Nrf2对肝脏NF-kB活性作用的影响。结果:1.光镜下观察,Control组与KO组小鼠肝脏结构无明显变化,HFD组小鼠肝脏呈现大片脂肪沉积和炎症细胞浸润,KOHFD组小鼠肝脏则呈现明显的大泡性变性,且炎症细胞浸润较HFD组明显加重;2.与Control组相比,KO组小鼠肝脏MDA轻度升高,GSH轻度降低,但无明显差异,而HFD组和KOHFD组小鼠肝脏MDA显著升高(P〈0.05),GSH显著降低(P〈0.05),且KOHFD组MDA明显高于HFD组(P〈0.05),GSH明显低于HFD组(P〈0.05)。3.ELISA结果显示,与Control组相比,KO组小鼠肝脏TNFα和IL-6分泌轻度增加,而HFD组和KOHFD组小鼠肝脏TNFα与IL-6水平显著升高(P〈0.05),且KOHFD组小鼠肝脏TNFα与IL-6显著高于HFD组(P〈0.05);4.Western-Blot结果显示,Control组和KO组之间无明显差异,而KOHFD组和HFD组小鼠肝脏胞核NF-kB蛋白表达水平显著升高,且KOHFD组高于HFD组。结论:敲除Nrf2可以显著加重高脂饮食诱导的小鼠肝脏氧化应激水平,进而促进NF-kB的活化,从而为通过以Nrf2为靶点治疗NASH提供重要的实验依据。 相似文献