首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The saturation transfer electron spin resonance (STESR) spectra of spin-labeled phosphatidylcholines in gel phase lipid bilayers are shown to be sensitive to dipolar spin-spin interactions with paramagnetic ions in the aqueous phase. The reciprocal integrated intensity of the STESR spectrum is linearly dependent on aqueous Ni2+ ion concentration, hence, confirming the expectation that the STESR intensity is directly proportional to the spin-lattice relaxation time of the spin label. The gradient of the relaxation rate with respect to Ni2+ ion concentration decreases strongly with the position of the nitroxide group down the sn-2 chain of the spin-labeled lipid and is consistent with a 1/R3 dependence on the distance, R, from the bilayer surface. The values derived for the dimensions of the bilayer and lipid molecules in the case of dipalmitoyl phosphatidylcholine (DPPC) are in good agreement with those available from x-ray diffraction studies. Allowance for the multibilayer nature of the DPPC dispersions gives an estimate of the water layer thickness that is also consistent with results from x-ray diffraction. The profile of the paramagnetic ion-induced relaxation is drastically changed with DPPC dispersions in glycerol for which the lipid chains are known to be interdigitated in the gel phase. The terminal methyl groups of the lipid chains are located approximately in register with the C-3 atoms of the sn-2 chain of the oppositely oriented lipid molecules in the interdigitated phase. The thickness of the lipid layer and the effective thickness of the lipid polar group are reduced by ~40% in the interdigitated phase as compared with the bilayer phase. The calibrations of the distance dependence established by use of spin labels at defined chain positions should be applicable to STESR measurements on other biological systems.  相似文献   

2.
The dependences of adsorbed water state (obtained from the variations in 1H NMR spectra with the angle between the bilayer normal and magnetic field direction) and water diffusion along the bilayer normal (measured using pulsed field gradient 1H NMR) on hydration degree have been studied in macroscopically oriented bilayers of dioleoylphosphatidylcholine. The angle dependences of the shape of NMR spectrum are qualitatively different only for water concentrations higher and lower than that achieved by hydration from saturated vapors (χeq, about 23%). At concentrations lower than χeq, all water in the sample either makes the hydration shells of the lipid polar heads or is in fast exchange with the shell water, so the spin-echo signal from water is detected only within a narrow range of angles close to the magic angle, 54.7°. At concentration exceeding χeq, the spin-echo signal from water is retained at all orientations, suggesting that a portion of water between bilayers (quasi-free water) slowly exchanges with water bound to the polar heads. There is an inverse dependence of the coefficient of water self-diffusion through the bilayer system on the hydration degree, which is described in the Tanner model with account of water self-diffusion in the hydrophobic part of the bilayer. Bilayer permeability, distribution coefficient of molecules between aqueous and lipid phases, and water self-diffusion coefficient in the hydrophobic region of the bilayer are estimated.  相似文献   

3.
Water proton nuclear magnetic resonance relaxation measurements have been obtained for aqueous suspensions of red cell membranes. These data support a model in which water molecules are exchanging rapidly between a bound phase with restricted motions and a free phase with dynamic properties similar to liquid water. From this model and these data, estimates are obtained for the relaxation time for bound phase water. Possible relaxation mechanisms for bound phase water are discussed and some support is found for an intermolecular interaction modulated by translational motions characterized by a diffusion constant of 10?9 cm2/s.  相似文献   

4.
The diffusion process of dimethylsulfoxide (DMSO) through zwitterionic dimyristoylphosphatidylcholine (DMPC) lipid bilayer was studied by means of molecular dynamics (MD) simulations. To account for the cryoprotectant concentration difference between the inside and the outside of the cell, dual DMPC lipid bilayers which separate two aqueous reservoirs with and without DMSO were modeled. The initial configuration of the simulation model had DMSO molecules present in one of the aqueous phases (outside the cell) at two different concentrations of ~3 and ~6?mol%. MD simulations were performed on the systems for 50?ns at 323?K and 1?bar. Although the simulation time considered in the study was insufficient for the DMSO molecules to reach the other aqueous phase and equilibrium, early stages of the diffusion process indicated that DMSO molecules had a tendency to diffuse towards the other aqueous phase. The effects of DMSO on bilayer structural characteristics during the diffusion process were investigated. Simulations were analyzed to correlate the following properties of lipid bilayers in the presence of two different aqueous phases: area per lipid, lipid thickness, mass density profiles, lipid tail order parameter and water dipole orientation. Area per lipid calculated for the leaflet facing the aqueous DMSO?Cwater mixture did not show any significant difference compared to area per lipid for the DMSO-free pure DMPC bilayer. Mass density profiles revealed that DMSO molecules had a strong tendency to diffuse toward the aqueous phase with pure water. The lipid tail order parameter calculated for the sn-1 tail of the leaflet facing the aqueous DMSO?Cwater mixture showed that the ordering of lipid tails decreased compared to the leaflet exposed to pure water. However, the ordering of lipid tails in a system where a single bilayer is hydrated by an aqueous DMSO?Cwater mixture is far lower.  相似文献   

5.
Theonellamide A (TNM-A) is an antifungal bicyclic dodecapeptide isolated from a marine sponge Theonella sp. Previous studies have shown that TNM-A preferentially binds to 3β-hydroxysterol-containing membranes and disrupts membrane integrity. In this study, several 1H NMR-based experiments were performed to investigate the interaction mode of TNM-A with model membranes. First, the aggregation propensities of TNM-A were examined using diffusion ordered spectroscopy; the results indicate that TNM-A tends to form oligomeric aggregates of 2–9 molecules (depending on peptide concentration) in an aqueous environment, and this aggregation potentially influences the membrane-disrupting activity of the peptide. Subsequently, we measured the 1H NMR spectra of TNM-A with sodium dodecyl sulfate-d25 (SDS-d25) micelles and small dimyristoylphosphatidylcholine (DMPC)-d54/dihexanoylphosphatidylcholine (DHPC)-d22 bicelles in the presence of a paramagnetic quencher Mn2+. These spectra indicate that TNM-A poorly binds to these membrane mimics without sterol and mostly remains in the aqueous media. In contrast, broader 1H signals of TNM-A were observed in 10 mol % cholesterol-containing bicelles, indicating that the peptide efficiently binds to sterol-containing bilayers. The addition of Mn2+ to these bicelles also led to a decrease in the relative intensity and further line-broadening of TNM-A signals, indicating that the peptide stays near the surface of the bilayers. A comparison of the relative signal intensities with those of phospholipids showed that TNM-A resides in the lipid–water interface (close to the C2′ portion of the phospholipid acyl chain). This shallow penetration of TNM-A to lipid bilayers induces an uneven membrane curvature and eventually disrupts membrane integrity. These results shed light on the atomistic mechanism accounting for the membrane-disrupting activity of TNM-A and the important role of cholesterol in its mechanism of action.  相似文献   

6.
The main gel-fluid phase transition of wet lipid bilayers is examined in terms of a microscopic interaction model which incorporates both trans-gauche isomerism of the lipid acyl chains and crystal orientation variables for the lipid molecules. The model gives two scenarios for the phase behavior of wet lipid bilayers in terms of temperature: (i) chain melting occurs at a higher temperature than crystallization, or (ii) chain melting and crystallization occur at the same temperature. Experimental data for lipid bilayers is consistent with the second scenario. In this case, computer simulation is used to investigate the non-equilibrium behaviour of the model. The numerical data is intepreted in terms of interfacial melting on heating and grain formation on cooling through the main phase transition. Interfacial melting is a non-equilibrium process in which the grains of a polycrystalline bilayer melt inwards from the boundaries. The prediction of interfacial melting in wet lipid bilayers is examined in relation to data from both equilibrium and nonequilibrium measurements, to corresponding phase behavior in monolayers, and to previous theoretical work.Abbreviations DHPE dihexadecyl phosphatidylethanolamine - DMPA dimyristoyl phosphatidic acid - DMPC dimyristoyl phosphatidylcholine - DPPC dipalmitoyl phosphatidylcholine - DSC differential scanning calorimetry - MCS/S Monte Carlo steps per site Supported in part by the NSERC of Canada and FCAC du QuébecSupported by the Danish Natural Science Research Council under grant J.nr. 5.21.99.72  相似文献   

7.
The fusion of liposomes with planar lipid bilayers was monitored by two different methods. (a) Liposomes consisting of phospholipids and cholesterol were added to the aqueous phase bathing the cholesterol-deficient planar lipid bilayers in the presence of nystatin. The resulting increase in the planar lipid bilayer's electrical conductance was considered indicative of fusion. (b) Transplanar lipid bilayer injection of 35SO42? trapped inside the liposomes.It is shown by both methods that fusion is specifically dependent on the presence of negatively charged phospholipids both in the liposomes and the planar lipid bilayers and on Ca2+ in the aqueous phase of the fusion system.  相似文献   

8.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by 31P and 1H magic-angle spinning (MAS) NMR spectroscopy. The 31P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

9.
The molecular organization of 1-(3-sn-phosphatidyl)-l-myo-inositol 3,4-bis-(phosphate)/water systems is investigated over a wide range of lipid concentrations using X-ray diffraction, calorimetry, analytical ultracentrifugation, densitometry and viscometry.At high lipid concentrations, the lipid molecules are found to form a lamellar phase. The repeat distance increases from 60 to 120 Å with increasing water content to 70 wt% and the surface area per lipid molecule increases from 41.7 Å2 to a limiting value of 100 Å2.On the other hand, at very low lipid concentrations the molecules are found to form not vesicles but micelles, the total molecular weight of which takes a value of 93 000.This finding revises the prevalent view that lipids containing two (or more) hydrocarbon chains form extended bilayers or vesicles, whereas single chained lipids form micelles. (Tanford, C.(1972) J. Phys. Chem. 76, 3020–3024).  相似文献   

10.
The interactions of salts with lipid bilayers are known to alter the properties of membranes and therefore influence their structure and dynamics. Sodium and calcium cations penetrate deeply into the headgroup region and bind to the lipids, whereas potassium ions only loosely associate with lipid molecules and mostly remain outside of the headgroup region. We investigated a dipalmitoylphosphatidylcholine (DPPC) bilayer in the gel phase in the presence of all three cations with a concentration of Ca2+ ions an order of magnitude smaller than the Na+ and K+ ions. Our findings indicate that the area per unit cell does not significantly change in these three salt solutions. However the lipid molecules do re-order non-isotropically under the influence of the three different cations. We attribute this reordering to a change in the highly directional intermolecular interactions caused by a variation in the dipole-dipole bonding arising from a tilt of the headgroup out of the membrane plane. Measurements in different NaCl concentrations also show a non-isotropic re-ordering of the lipid molecules.  相似文献   

11.
The molecular motions of membrane proteins in liquid-crystalline lipid bilayers lie at the interface between motions in isotropic liquids and in solids. Specifically, membrane proteins can undergo whole-body uniaxial diffusion on the microsecond time scale. In this work, we investigate the 1H rotating-frame spin-lattice relaxation (T ) caused by the uniaxial diffusion of the influenza A M2 transmembrane peptide (M2TMP), which forms a tetrameric proton channel in lipid bilayers. This uniaxial diffusion was proved before by 2H, 15N and 13C NMR lineshapes of M2TMP in DLPC bilayers. When bound to an inhibitor, amantadine, the protein exhibits significantly narrower linewidths at physiological temperature. We now investigate the origin of this line narrowing through temperature-dependent 1H T relaxation times in the absence and presence of amantadine. Analysis of the temperature dependence indicates that amantadine decreases the correlation time of motion from 2.8 ± 0.9 μs for the apo peptide to 0.89 ± 0.41 μs for the bound peptide at 313 K. Thus the line narrowing of the bound peptide is due to better avoidance of the NMR time scale and suppression of intermediate time scale broadening. The faster diffusion of the bound peptide is due to the higher attempt rate of motion, suggesting that amantadine creates better-packed and more cohesive helical bundles. Analysis of the temperature dependence of $ { \ln }\left( {T_{1\rho }^{ - 1} } \right) $ indicates that the activation energy of motion increased from 14.0 ± 4.0 kJ/mol for the apo peptide to 23.3 ± 6.2 kJ/mol for the bound peptide. This higher activation energy indicates that excess amantadine outside the protein channel in the lipid bilayer increases the membrane viscosity. Thus, the protein-bound amantadine speeds up the diffusion of the helical bundles while the excess amantadine in the bilayer increases the membrane viscosity.  相似文献   

12.
Weak magnetic and electromagnetic fields affect physiological processes in animals, plants, and microorganisms. Ion cyclotron resonance (ICR) is discussed as one of the sensitive mechanisms, which enable perception of the geomagnetic field and its orientation. Numerous biological effects are observed involving several small ions, showing windows of predicted frequencies and intensities. The pioneering work of Guiliano Preparata and Emilio Del Giudice using quantum electrodynamics showed that spontaneously originating coherent regions in water facilitate ICR effects at incoherent water phase boundaries. Here we examine the ICR response of the calcium ion (Ca2+), crucial for many life processes. We use an aqueous solution containing the biologically ubiquitous membrane lipid L-α-phosphatidylcholine that serves as a biomimetic proxy for dynamic light scattering (DLS) and nonlinear dielectric spectroscopy (NLDS) measurements. One notable result is that this system approaches a new equilibrium upon addition of calcium by means of the oscillatory Belousov–Zhabotinsky chemical reaction, oscillations are significantly reduced under Ca2+ ICR application. Secondly an “oscillator” of calcium ions appears to be able to itself couple coherently and predictably to large-scale coherent regions in water. This system appears able to regulate ion fluxes in response to very weak environmental electromagnetic fields.  相似文献   

13.
The fully active gastrin and CCK analogues [Nle15]-gastrin- 17 and [Nle, Thr]-CCK-9 were analysed for their Ca2+ and Tb3+ affinities in various membrane mimetic conditions. In TFE both gastrin and CCK exhibited high affinities for calcium and terbium. At saturation level identical metal ion/peptide ratios were determined with Ca2+ and Tb3+, i.e. R = 3 for gastrin and R = 1 for CCK, confirming the very similar coordination properties of the two metal ions. The conformational effects of both metal ions were found to be very similar with a disordering effect in the case of gastrin and a conformational transition to β-turn type structure in the case of CCK. In order to mimic more properly physiological conditions, similar experiments were performed in the prsence of phospholipid bilayers. No interaction of the peptides with the bilayers was observed even in the presence of phospholipid bilayers. No interaction of the peptides with the bilayers was observed even in the presence of mmolar Ca2+ concentrations. Induced lipid interaction via N-terminal lipodervatization of gastrin and CCK allowed to translocate quantitatively the two hormones into phospholipid bilayers and to examine the effect of extravesicular Ca2+ on the conformation of the peptide headgroups and on their display at the water/lipid interphase. The CCK moiety of the lipo-CCK inserted into phospholipid bilayers interacts with the lipid phase and addition of Ca2+ enhances the clustering of the peptide headgroups in a more β-sheet type conformation. Conversely, insertion of lipo-gastrin into the bilayers leads to full exposure of the gastrin headgroup to the bulk water in predominantly random coil structure. Again Ca2+ provokes aggregation. As the lipo-peptide/phospholipid system still represents only an artificial model, it remains hazardous to derive a biological relevance from these data. The significantly higher affinity of lanthanide ions than Ca2+ for the peptides could well play a role in the inhibibitory activity of lanthanum on the signal transduction of the CCK family of hormones.  相似文献   

14.
C H Hsieh  S C Sue  P C Lyu    W G Wu 《Biophysical journal》1997,73(2):870-877
Diphytanoylphosphatidylcholine (DPhPC) has often been used in the study of protein-lipid interaction and membrane channel activity, because of the general belief that it has high bilayer stability, low ion leakage, and fatty acyl packing comparable to that of phospholipid bilayers in the liquid-crystalline state. In this solid-state 31P and 2H NMR study, we find that the membrane packing geometry and headgroup orientation of DPhPC are highly sensitive to the temperature studied and its water content. The phosphocholine headgroup of DPhPC starts to change its orientation at a water content as high as approximately 16 water molecules per lipid, as evidenced by hydration-dependent 2H NMR study at room temperature. In addition, a temperature-induced structural transition in the headgroup orientation is detected in the temperature range of approximately 20-60 degrees C for lipids with approximately 8-11 water molecules per DPhPC. Dehydration of the lipid by one more water molecule leads to a nonlamellar, presumably cubic, phase formation. The lipid packing becomes a hexagonal phase at approximately 6 water molecules per lipid. A phase diagram of DPhPC in the temperature range of -40 degrees C to 80 degrees C is thus constructed on the basis of NMR results. The newly observed hydration-dependent DPhPC lipid polymorphism emphasizes the importance of molecular packing in the headgroup region in modulating membrane structure and protein-induced pore formation of the DPhPC bilayer.  相似文献   

15.
The autodiffusion of water in a multibilayer structure formed by dipalmitoyl phosphatidylcholine and oriented on glass plates was studied by the method of NMR with magnetic field pulse gradient. It was shown that water molecules occur in several states differing in the degree of interaction with lipid molecules. A spectrum of the coefficients of water autodiffusion in a direction transversal to bilayers was found. The use of samples with different distances between the plates and an analysis of the dependence of the mode of diffuse decay of spin echo on diffusion time and the orientation of the sample, as well as measurements at temperatures above and below the gel-liquid crystal phase transition in cholesterol-containing samples enabled one to discriminate the diffuse decay component responsible for the transbilayer movement of water. The coefficient of bilayer permeability was estimated using the Tanner model. It was shown that the formation of mechanical defects ("cracks") in plane oriented bilayers is the most probable reason for the presence of the water component with the relatively high coefficient of diffusion.  相似文献   

16.
The temperature dependence of the area-specific conductance of egg-lecithin/cholesterol bilayers formed with n-hexadecane in 1 mM KCl has been studied. From Arrhenius plots the activation energy for conduction was measured as 35 ± 2 kJ/mol. Comparison of this value with those predicted by various mechanisms whereby charge could be translocated through a bilayer indicate that it is extremely unlikely that ions pass directly through the hydrophobic interior. It is possible however, that ions are translocated across the bilayer through aqueous pores (with radius > 1 nm) which are an intrinsic, if fluctuating, part of the bilayer structure.  相似文献   

17.
The state of adsorbed water (estimated from the dependence of the shape of the 1H NMR spectrum on the angle between the normal to the bilayers and the direction of the magnetic field) and the diffusion of water molecules in the direction of the normal to the bilayers (estimated by 1H NMR spectroscopy with the impulse gradient of magnetic field) in microscopically oriented dioleoylphosphatidylcholine bilayers have been studied depending on hydration. The dependences of the shape of the NMR spectrum on angle differ qualitatively only at concentrations of water greater and less than the concentration that is achieved upon hydration from saturated vapors chi(eq) (about 23 weight %). At concentrations below chi(eq), all water present in samples enters the hydrate shells of polar "heads" of lipids or is in the state of "rapid exchange" with the water of hydrate shells, with the result that the signal of spin echo for water is observed only in a narrow range of angles close to the "magic angle", 54 degrees C. At concentrations above xhi(eq), the signal of spin echo for water is retained at all orientations, indicating probably that part of water between the bilayers ("quasi-free water") is in the state of a "slow exchange" with water "bound" to polar "heads". It was found that the coefficient of self-diffusion of water across the system of bilayers inversely depends on the degree of hydration, which is described in the Tanner model with consideration of the self-diffusion of water molecules in the hydrophobic moiety of the bilayer. The permeability of the bilayer, the coefficient of distribution of molecules between the water and lipid phases, and the coefficient of self-diffusion of water in the hydrophobic moiety of the bilayer were estimated.  相似文献   

18.
Asymmetric lipid bilayers are formed by adjoining the hydrocarbon chains of two different lipid monolayers at the air-water interface through an aperture in a teflon partition separating two aqueous phases. It is shown that the addition of Ca2+ or polysine to the compartment limited by a monolayer of the neutral lipids glycerol dioleate or phosphatidylcholine results in no modification of the resistance and stability of the membrane, whereas a drastic decrease in both parameters is elicited by the presence of these ions on the opposite compartment containing a monolayer of the negatively charged cardiolipin or phosphatidylserine. The surface-charge dependence of this phenomenon indicates the persistence of the asymmetric lipid distribution in the bilayer after its formation from two different monolayers.  相似文献   

19.
We present here results of molecular dynamics (MD) simulations on hydrated bilayers of 40 molecules of 1-2-dimyristoyl-sn-glycero-3-phosphatidyl choline (DMPC) in liquid crystalline (Lα) phase using two different models (i) with same (A) conformation for all DMPC molecules, (ii) with alternate rows having different (A and B reported in crystallographic studies on DMPC) conformations. The bilayers were hydrated using 776 and 1064 water molecules. Simulations have been carried out at 310K with AMBER 4.0 program, using united atom force field for 200 pico seconds (ps) after equilibration. During heating and equilibration constant pressure temperature (PT) conditions were maintained while in simulation of equillibrated bilayers constant volume temperature (VT) conditions were used. Subaveraged atomic coordinates were used to calculate geometric parameters of lipid molecules and lipid water interaction. Our results show larger flexibility of polar head group and glycerol region in Lα phase compared to gel or non-hydrated bilayers. Chain disorder was more towards end. Sn-2 chains were more disordered. Use of two types of starting conformations increased disorder. Trans fraction of chain torsional angle was higher in non-hydrated bilayer. However it was more disordered due to ‘swing’ movement of chains because of distortion in torsional angles α2 and 03 due to absence of water molecules. Trans fraction of the chains, order parameter and water penetration showed general agreement with the available experimental results. On the whole MD technique was found to be quite useful for depicting microscopic behaviour of liquid crystalline system and correlating the same with macroscopic changes observed experimentally.  相似文献   

20.
Coenzyme model reactions, such as the H (H+ + 2e) transfer from NADH models to triphenyl methane dyes, were investigated in the presence of lipid bilayers, for example, -α-dimyristoyl phosphatidyl choline and egg yolk lecithin. In the temperature dependence of the acceleration effect by the lipid bilayer, discontinuous points were observed, corresponding to the phase transition point such as gel-liquid crystal (Tc) or the segregation point (Ts). The Tc and Ts values of the bilayers varied with the reactant as a result of the difference of perturbing effect on the structure of the bilayers. The pressure effect on the transition point was also studied. Transition points such as Tc or Ts became higher with increasing pressure, and dTc/dP or dTs/dP was different for various bilayers. In the gel phase of the membrane, stereospecific reduction of malachite green was observed by chiral nicotinamide: the difference in the catalytic effect on the reduction rate between (R)- and (S)-dihydronicotinamides was larger in the gel phase than that in the liquid crystal phase or in the phase separated state, which suggests that the gel-state molecule can recognize the molecular structure better than the liquid-crystal state molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号