首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The aim of this paper was to study, in the second leaf of wheat plants with a long ontogenesis (47 d), the activity of the enzyme which catalyzes the synthesis of glutamic acid. The activity of the NADH-dependent glutamate synthase prevailed in young tissues of not yet fully expanded second leaf at the stage of incomplete autotrophy (at this stage, organic carbon and nitrogen substances are transferred into the leaf). This form was completely inhibited by azaserine (1 mmol1−1). The activity of the ferredoxin-dependent GOGAT increased with increasing leaf blade area, with its peak occuring at the time of maximum expansion of the assimilation area. Thus fd-GOGAT activity was characteristic for the photosynthetic fully autotrophic phase of leaf development which is materialized in completely mature leaf tissues. In plants grown in full-strength Knop’s nutrient solution containing nitrogen, fd-GOGAT was active till the early and medium senescence, whereas only to the early senescence in plants grown in a solution lacking nitrogen. No fd-GOGAT could be detected at the stage of late leaf senescence.  相似文献   

3.
In microplot field experiments conducted over the course of 12 years, the accumulation of dry matter was recorded in the leaves, stems, and ears of the primary shoots of plants of four cultivars of spring wheat (Triticum aestivumL.) differing in productivity and drought resistance. The contribution of organs to the accumulation of dry matter by the shoot from emergence to anthesis was calculated, and relative changes in the weight of the ear after anthesis were assessed. In all the cultivars, the contribution of the leaves was the same; however, the share of the ear was greater in short-stem cultivars of the intensive type in which the leaves were more active during the time of grain filling. Furthermore, this load increased, and the relative increment in the ear weight after flowering decreased in the years of drought, because the contribution of the leaves did not depend on water supply during the growing season. During these years, the contribution of the ear increased in the plants of all the cultivars. The authors conclude that, in arid regions, in addition to drought resistance, the cultivar should display such a ratio between the ear weight and the weight of leaves that would still ensure satisfactory grain filling  相似文献   

4.
刘兰  张林生  邢媛  张楠 《西北植物学报》2011,31(9):1786-1792
以2种耐旱性不同的盆栽小麦陕合6号(干旱耐受型)和郑引1号(干旱敏感型)为材料,分别在其苗期、分蘖期、拔节期、开花期对土壤实施不同程度的自然干旱胁迫和复水处理,采用SDS-PAGE和Western blotting技术研究其叶片脱水素的表达规律,探究小麦整个生长期脱水素的表达与干旱胁迫的关系.结果表明:2种小麦的脱水素均仅在干旱胁迫时表达,其中45 kD和37 kD的脱水素在2种小麦的4个发育期的叶片中均有表达,28 kD的脱水素仅在特定发育时期表达.在干旱耐受型小麦(陕合6号)中,脱水素在胁迫初期少量表达,随着胁迫程度加剧表达量急剧增加,在重度干旱胁迫下达到峰值,复水后小麦叶片中脱水素含量迅速下降;在干旱敏感型小麦(郑引1号)中,脱水素在胁迫初期大量表达,中度胁迫表达量小幅度回落,到复水1 d达到峰值,此后随着复水时间增加小麦叶片中脱水素的量逐渐下降.研究表明,小麦叶片脱水素表达与干旱胁迫程度和生育期迫密切相关,不同耐旱型小麦材料中叶片脱水素表达的差异与品种之间的干旱耐受能力密切相关.  相似文献   

5.
麦蚜自然种群的空间动态   总被引:4,自引:0,他引:4  
赵惠燕  汪世泽 《生态学杂志》1990,9(4):16-19,F004
一、引言在生态学中研究种群动态有两个分支,一是追踪数量随时间变化,既所谓数量动态的问题,另一是考查种群个体在空间散布状态的变化,即所谓空间动态的问题。关于空间动态中分布型的研究过去多采用传统的块面调查,用  相似文献   

6.
Larqué-Saavedra, A., Rodriguez, M. T., Trejo, C. andNava, T. 1985. Abscisic acid accumulation and water relationsof four cultivars of Phaseolus vulgaris L. under drought.—J.exp. Bot 36: 1787–1792. Plants of four cultivars of Phaseolus vulgaris L. differingin drought resistance were grown in pots under greenhouse conditionsand prior to flowering water was withheld from the pots untilthe mid-day transpiration rate reached values below 1.0 µgH2O cm–2 s–1 (designated the ‘drought’stage). At this point leaves were harvested on 3 or 4 occasionsover 24 h to determine the abscisic acid (ABA) concentration,total water potential (), solute potential (1) and turgor potential(p). Results showed that values of , 1, and p differed between cultivarswhen they reached the ‘drought’ stage. The stomatalsensitivity to changes in and p, was as follows: Michoacán12A3 > Negro 150 Cacahuate 72 > Flor de Mayo. These datacorrelated well with the pattern of drought resistance reportedfor the cultivars. ABA accumulation at the ‘drought’ stage differedbetween cultivars at each sampling time, but overall differencesin ABA level between cultivars were not significant. ABA levelsdid not, therefore, correlate with the drought resistance propertiesreported for the cultivars. Results are discussed in relationto and hour of the day when bean samples were taken for ABAanalysis. Key words: Phaseolus vulgaris L., drought resistance, abscisic acid  相似文献   

7.
Detecting and exploiting genetic variation in biomass accumulationis of great importance for increasing wheat yield when the harvestindex is close to its upper limit. This study was undertakento analyse the pattern of biomass accumulation and main stemelongation in 25 durum wheat (Triticum turgidum L. ‘Durum’)genotypes. Field experiments were conducted over 2 years intwo environments contrasting in the amount of available water,in northeastern Spain. Plants were sampled at the main stagesof Zadoks' scale, and dry weight per plant, crop dry weight(CDW) and main stem length were measured at each stage. Measurementsfor growth traits and thermal time from sowing fitted betterto an asymmetric logistic peak curve than to the Richards logisticmodel. Four biological variables were computed from the curve.Differences among curves describing changes in biomass werefound to be greater between irrigated and rainfed sites thanbetween years. Drought stress had less effect on main stem elongationthan on biomass accumulation. Average dry weight per plant andCDW were reduced by drought by 42 and 38%, respectively, duemainly to similar reductions in the mean rate of growth of thetwo variables. In contrast, cycle length from sowing to themaximum values of dry weight per plant and CDW was only slightlymodified by drought. Copyright 2001 Annals of Botany Company Triticum turgidum L. ‘Durum’, durum wheat, biomass, crop dry weight, stem length, rate of growth, modelling, growth analysis, logistic peak curve  相似文献   

8.
The drought-tolerant ‘Ningchun 47’ (NC47) and drought-sensitive ‘Chinese Spring’ (CS) wheat (Triticum aestivum L.) cultivars were treated with different PEG6000 concentrations at the three-leaf stage. An analysis on the physiological and proteomic changes of wheat seedling in response to drought stress was performed. In total, 146 differentially accumulated protein (DAP) spots were separated and recognised using two-dimensional gel electrophoresis. In total, 101 DAP spots representing 77 unique proteins were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. These proteins were allocated to 10 groups according to putative functions, which were mainly involved in carbon metabolism (23.4%), photosynthesis/respiration (22.1%) and stress/defence/detoxification (18.2%). Some drought stress-related proteins in NC47, such as enolase, 6-phosphogluconate dehydrogenase, Oxygen-evolving enhancer protein 2, fibrillin-like protein, 2-Cys peroxiredoxin BAS1 and 70-kDa heat shock protein, were more upregulated than those in CS. Multivariate principal components analysis revealed obvious differences between the control and treatments in both NC47 and CS, while cluster analysis showed that the DAPs displayed five and six accumulation patterns in NC47 and CS, respectively. Protein–protein interaction network analysis showed that some key DAPs, such as 2-Cys peroxiredoxin BAS1, RuBisCO large subunit-binding protein, 50S ribosomal protein L1, 6-phosphogluconate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase isoenzyme and 70-kDa heat shock protein, with upregulated accumulation in NC47, had complex interactions with other proteins related to amino acid metabolism, carbon metabolism, energy pathway, signal transduction, stress/defence/detoxification, protein folding and nucleotide metabolism. These proteins could play important roles in drought-stress tolerance and contribute to the relatively stronger drought tolerance of NC47.  相似文献   

9.
不同基因型苹果幼苗根系自由空间铁累积量和活化利用能力不同。在缺铁胁迫条件下,抗缺铁的苹果基因型小金海棠幼苗与对缺铁敏感的山定于幼苗相比,根系自由空间铁累积量大,且它对此铁库的活化利用能力强。此外,供给铁源不同,在植物根中形成的自由空间铁库大小就不同;不同植物基因型对此铁库的活化利用能力也不同,因此,根自由空间铁库的大小及植物对该铁库中铁的活化能力大小可作为不同基因型苹果铁营养效率的筛选指标。  相似文献   

10.
Changes in the number and size of chloroplasts in mesophyllcells were investigated in primary leaves of wheat from fullexpansion to yellowing under different growth conditions. Thenumber of chloroplasts per cell decreased slowly, although thedecrease was steady and statistically significant, until thelast stage of leaf senescence, when rapid degradation of chloroplaststook place. Rates of leaf senescence, or the decline in thenumber of chloroplasts, varied greatly among plants grown atdifferent seasons of the year, but about 20% of chloroplastsalways disappeared during the phase when steady loss of chloroplastsoccurred. The area of chloroplast disks also decreased graduallybut significantly, with a rapid decrease late in senescence.Thus, the total quantity of chloroplasts per mesophyll celldecreased substantially during leaf senescence. Yellowed leavescontained numerous structures that resemble oil drops but nochloroplasts. Decreases in rates of photosynthesis that occurduring senescence may, therefore, be largely due to decreasesin the quantity of chloroplasts. However, a better correlationwas found between the decrease in the maximum capacity for photosynthesisand the degradation of RuBP carboxylase. When plants had beengrown with a sufficient supply of nutrients, the number of chloroplastsdecreased steadily but at a reduced rate and the reduction inthe area of chloroplast disks was strongly suppressed. Thus,the quantitative decrease in chloroplasts in senescing leavesappears to be regulated by the requirements for nutrients (nitrogen)of other part of the plant. 3Present address: Department of Biology, Faculty of Science,Toho University, Miyama, Funabashi, Chiba, 274 Japan  相似文献   

11.
通过研究不同抗旱性小麦品种中转录因子表达水平的差异,为阐明小麦抗旱机制奠定基础。依据候选基因序列设计PCR引物,以干旱胁迫后0、3、6、9、12和24 h的小麦叶片为实验材料,以26S rRNA为内参,运用荧光定量PCR技术,检测Wdreb2、Wlip19基因在干旱敏感性和干旱耐受性小麦叶片中的相对表达量。定量PCR结果显示:干旱胁迫后,Wdreb2、Wlip19基因在干旱敏感性小麦叶片中的表达明显低于干旱耐受性小麦,在不同品种叶片中的响应时间和表达趋势存在差异。研究认为,Wdreb2、Wlip19基因在不同品种小麦受到干旱胁迫后的表达差异,与该品种小麦的抗旱能力具有一定的相关性。  相似文献   

12.
Two cultivars of wheat (Triticum aestivum L. cvs Sonoita and Yecora Rojo) were grown to maturity in a growth chamber within four sub-chambers under two CO2 levels (350 or 1000 microliters per liter) at either ambient (21%) or low O2 (5%). Growth analysis was used to characterize changes in plant carbon budgets imposed by the gas regimes. Large increases in leaf areas were seen in the low O2 treatments, due primarily to a stimulation of tillering. Roots developed normally at 5% O2. Seed development was inhibited by the subambient O2 treatment, but this effect was overcome by CO2 enrichment at 1000 microliters per liter. Dry matter accumulation and seed number responded differently to the gas treatments. The greatest dry matter production occurred in the low O2, high CO2 treatment, while the greatest seed production occurred in the ambient O2, high CO2 treatment. Growth and assimilation were stimulated more by either CO2 enrichment or low O2 in cv Yecora Rojo than in Sonoita. These experiments are the first to explore the effect of whole plant low O2 treatments on growth and reproduction. The finding that CO2 enrichment overcomes low O2-induced sterility may help elucidate the nature of this effect.  相似文献   

13.
Bound Water in Durum Wheat under Drought Stress   总被引:1,自引:0,他引:1       下载免费PDF全文
To study drought stress effects on bound water, adsorption isotherms and pressure-volume curves were constructed for two durum wheat (Triticum durum Desf.) cultivars: Capeiti 8 (drought tolerant) and Creso (drought sensitive). Plants were grown under well-watered and water-stressed conditions in a controlled environment. Differential enthalpy (ΔH) was calculated through van't Hoff analysis of adsorption isotherms at 5 and 20°C, which allowed us to determine the strength of water binding. ΔH reached the most negative values at approximately 0.06 gram H2O/gram dry weight and then increased rapidly for well-watered plants (until 0.10 gram H2O/gram dry weight) or more slowly for drought-stressed plants (until 0.15-0.20 gram H2O/gram dry weight). Bound water values from pressure-volume curves were greater for water-stressed (0.17 gram H2O/gram dry weight) than for well-watered plants (0.09 gram H2O/gram dry weight). They may be estimates of leaf moisture content where ΔH reaches the less negative values and hence some free water appears. With respect to the well-watered plants, tightly bound water tended to be less bound during drought, and more free water was observed in cv Creso compared to cv Capeiti 8 at moisture contents >0.10 gram H2O/gram dry weight.  相似文献   

14.
干旱和盐胁迫诱导甜菜叶中的甜菜碱醛脱氢酶的积累   总被引:3,自引:0,他引:3  
应用双向免疫扩散方法测定表明,甜菜叶片的甜菜碱醛脱氢酶能与菠菜的甜菜碱醛脱氢酶抗体发生交叉反应。渗透势-0.65 ̄-2.6MPa的甘露醇溶液或200~300mmol/L的NaCl溶液,诱导甜茶叶片甜菜碱醛脱氢酶积累明显增加。  相似文献   

15.
通过分析一氧化氮(nitric oxide,NO)、活性氧(reactive oxygen species,ROS)和干旱胁迫对小麦根氧化还原状态和叶片脱落酸(abscisic acid,ABA)积累的影响,探讨了干旱胁迫下NO和H2O2调节ABA合成的可能机制。结果表明:干旱胁迫处理初期小麦根还原型谷胱甘肽含量降低、抗氧化酶活性发生振荡变化,细胞氧化还原状态向氧化型转变。NO和H2O2能模拟干旱胁迫的作用使细胞状态向氧化型转变,还可以使小麦叶片ABA积累量上升。干旱胁迫下NO和H2O2对ABA合成的调节作用可能是通过调节细胞氧化还原状态进行。  相似文献   

16.
Blank A  McKeon TA 《Plant physiology》1991,97(4):1409-1413
We have monitored the activities of RNases WLA, WLB, and WLC (A Blank, TA McKeon [1991] Plant Physiol 97: 1402-1408) during leaf senescence in wheat (Triticum aestivum L. cv Chinese Spring). When seedlings were induced to senesce in darkness, protein loss from primary leaves began immediately. RNase WLB activity was unchanged for 2 days and then rose linearly, reaching a sixfold elevation in 7 days. RNase WLC activity declined for 2 days and then rose linearly, reaching a twofold elevation in 7 days. RNase WLA activity declined in the first 2 days and was unchanged thereafter. Although differentially expressed, these RNase activities may respond to a common regulatory mechanism(s) which, at 2 days of darkness, signals progression into a more advanced stage of senescence. The RNase activities were also differentially expressed during light-induced recovery, returning to normal levels in dissimilar patterns. In flag leaves of greenhouse-grown wheat, the three RNase activities increased during the early postanthesis period when protein content was stable and underwent further, accelerated accumulation during senescence. RNase WLB activity showed the largest overall senescence-associated elevation (sixfold), followed by RNase WLC (fourfold) and RNase WLA (threefold).  相似文献   

17.
Two wheat (Triticum durum Desf.) cultivars with different sensitivities to drought were either grown under regular irrigation or subjected to water deficit by withholding water for 14 d. Water-stressed plants of both cultivars underwent similar decreases in leaf water potential, but the drought-tolerant cultivar showed higher relative water content and turgor. Neither osmotic nor elastic adjustment mechanisms appeared to be active under the conditions described here. Thylakoids isolated from the stressed, drought-tolerant wheat showed an increase in lipid-to-protein ratio, in comparison with the control, whereas this ratio remained unchanged in the sensitive wheat. In both cultivars, water deficit determined different rearrangements in the composition of the thylakoid individual polar lipids, but their unsaturation level remained unaffected with the exception of monogalactosyldiacylglycerol. In the drought-sensitive cultivar, an accumulation of free fatty acids together with a reduction in polar lipid amount was observed. Electron paramagnetic resonance measurements of spin-labeled proteins of stressed plants from the sensitive cv Adamello showed a higher spin label rotational correlation time together with lower sulphydryl group and mobile proteic portion levels, in comparison with the control. In the tolerant cv Ofanto, the first two parameters changed to a lesser extent following water depletion, and the mobile proteic portion was not altered.  相似文献   

18.
Wheat plants (Triticum aestivum L., cv. Warigal) were subjectedto 20 d of water deficit during the period of endosperm celldivision. Drought accentuated the differences in final grainweight between spikelets and between grains within spikelets.The distal grains of top spikelets were most affected by drought.The maximum number of endosperm cells was, respectively, 30and 40 per cent lower in basal grains and distal grains of draughtedplants. In basal grains of middle spikelets, the number of largestarch granules per cell was unaffected but the number of smallstarch granules per cell was 45 per cent lower in grains ofdraughted plants. The initiation of small starch granules wasmore affected than cell division because severe water deficitoccurred earlier during the former process than the latter.Final dry weight appeared to correlate well with the maximumnumber of endosperm cells, but depended also on the number ofstarch granules per cell. Consequently, the amount of dry matterper cell was not constant in both treatments. The concentration of sucrose per endosperm cell was lower onlyin the droughted distal grains of top spikelets. The supplyof sucrose to endosperm cells did not regulate the initiationof small starch granules. Triticum aestivum L., wheat, drought, grain growth, cell division, starch  相似文献   

19.
The Mediterranean climate of North Africa is characterized byuncertain rainfall immediately after seedling emergence, leadingto drought early in the growing season which depresses durumwheat production. However, there is limited understanding ofthe physiological basis of resistance of spring durum wheatto drought in rainfed Mediterranean regions. The objectivesof this study were to examine differences in some physiologicalcharacters among spring durum wheat cultivars in response toduration of early-season drought, and to determine the relationshipof these characters to drought resistance. In two field experiments(1995 and 1996 growing seasons) and a glasshouse experiment(1996), six spring sown durum wheat cultivars were evaluatedunder four water regimes: well irrigated and three differentwater deficits from emergence until the onset of tillering,mid-tillering or at the end of tillering. Cultivars differedin their response. Decreases in photosynthesis soon after droughtstress was imposed resulted mainly from reduced stomatal conductance.Continued water deficits also reduced mesophyll photosyntheticactivity. Possible factors determining the drought-resistanceof a cultivar are lower sensitivity of CO2exchange rate, netCO2uptake to water loss ratio, stomatal resistance, relativewater content and greater osmotic adjustment under stress. Furthermore,there is sufficient intraspecific variation in these physiologicalattributes to suggest their use as selection tools.Copyright1998 Annals of Botany Company Wheat;Triticum durumDesf.; early-season drought; physiological responses.  相似文献   

20.
Presowing treatment of wheat (Triticum aestivum L.) seeds with 10 or 100 μM salicylic acid (SA) reduced the inhibition of 14-day-old plant growth under soil drought. The same effect was caused by the spraying of 7-day-old seedlings with 0.5 or 2 mM nitrogen oxide donor (sodium nitroprusside, SNP) before drought. The protective effect was enhanced by the combination of seed treatment with 10 μM SA and plant spraying with 0.5 mM SNP, while their combinations in higher concentrations caused weaker effects. SA treatment in both concentrations and 0.5 mM SNP under drought conditions increased the antioxidant enzyme activity (superoxide dismutase, catalase, and guaiacol peroxidase) in leaves. This effect was especially significant when 10 μM SA was combined with 0.5 mM SNP. Spraying with 2 mM SNP and its combination with seed presowing with 100 μM SA did not significantly change the antioxidant enzyme activity; however, the proline content in the leaves increased. It is concluded that the SA stress-protective action on plants can be modified with exogenous nitrogen oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号