首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
岷江上游不同景观结构小流域水量平衡的比较   总被引:1,自引:0,他引:1  
研究了1988~2002年岷江上游两个小流域(镇江关流域和黑水河流域)不同景观结构(土地覆盖、海拔、坡度、斑块密度、最大斑块指数等)对水量平衡的影响.基于两个流域土地覆盖类型、1988~2002年多年平均降水量和蒸散量的空间分布、两个流域土地覆盖类型同期多年平均径流深度的数据,得到不同土地覆盖类型的海拔、坡度、坡向与降雨、蒸散、径流的关系.结果表明,两个流域有林地海拔、坡度、坡向的不同导致其降水、蒸散降水比、径流降水比各异;两个流域草地水量平衡对景观格局的响应模式与有林地基本一致;由于黑水河流域的耕地分布在干旱河谷中,其蒸散量远远大于降水量,耕地本身的景观结构(坡向、坡度,斑块密度)并不对其水量平衡产生影响,这一点与镇江关完全不同.  相似文献   

2.
LUCC及气候变化对澜沧江流域径流的影响   总被引:1,自引:0,他引:1  
窦小东  黄玮  易琦  刘晓舟  左慧婷  李蒙  李忠良 《生态学报》2019,39(13):4687-4696
运用SWAT模型,通过设置不同情景,定量分析了澜沧江流域土地利用与土地覆被变化(Land Use and Land Cover Change,LUCC)和气候变化对径流的影响,并结合RCP4.5、RCP8.5两种排放情景对流域未来径流的变化进行预估。结果表明:SWAT模型在澜沧江流域径流模拟中具有很好的适用性,率定期和验证期的模型参数R~2分别达到0.80、0.74,Ens分别达到0.80、0.73;从土地利用变化方面考虑,流域内的农业用地转化为林地或草地,均会导致径流量的减少,而林地转化为草地则会引起径流量的增加,农业用地、林地、草地三者对径流增加贡献顺序为农业用地草地林地,从气候变化方面考虑,流域内的径流量与降雨量成正比,与气温成反比;2006—2015年间澜沧江流域气候变化引起的月均径流减少幅度强于LUCC引起的月均径流增加幅度,径流变化由气候变化主导;在RCP4.5和RCP8.5两种排放情景下,2021—2050年间澜沧江流域的径流均呈增加趋势,这与1971—2015年间流域实测径流的变化趋势相反。  相似文献   

3.
Ocean warming may lead to smaller body sizes of marine ectotherms, because metabolic rates increase exponentially with temperature while the capacity of the cardiorespiratory system to match enhanced oxygen demands is limited. Here, we explore the impact of rising sea water temperatures on Atlantic cod (Gadus morhua), an economically important fish species. We focus on changes in the temperature‐dependent growth potential by a transfer function model combining growth observations with climate model ensemble temperatures. Growth potential is expressed in terms of asymptotic body weight and depends on water temperature. We consider changes between the periods 1985–2004 and 2081–2100, assuming that future sea water temperatures will evolve according to climate projections for IPCC AR5 scenario RCP8.5. Our model projects a response of Atlantic cod to future warming, differentiated according to ocean regions, leading to increases of asymptotic weight in the Barents Sea, while weights are projected to decline at the southern margin of the biogeographic range. Southern spawning areas will disappear due to thermal limitation of spawning stages. These projections match the currently observed biogeographic shifts and the temperature‐ and oxygen‐dependent decline in routine aerobic scope at southern distribution limits.  相似文献   

4.
气候与土地利用变化下宁夏清水河流域径流模拟   总被引:7,自引:0,他引:7  
李帅  魏虹  刘媛  马文超  顾艳文  彭月  李昌晓 《生态学报》2017,37(4):1252-1260
气候和土地利用变化是影响水资源变化最直接的因素。应用SWAT模型对干旱半干旱区小流域宁夏清水河流域径流进行多情景模拟预测,以历史气候要素变化趋势和CA-Markov模型分别设置未来气候和土地利用变化情景,以决定系数R2和Nash-Sutcliffe模型效率系数Ens(Nash-Sutcliffe efficiency coefficient)来衡量模拟值与实测值之间的拟合度,并评价模型在清水河流域的适用性。结果表明,韩府湾站在校准期和验证期的R~2分别为0.80和0.71,Ens分别为0.77和0.69,泉眼山站在校准期和验证期的R2分别为0.66和0.63,Ens分别为0.62和0.56,表明构建的SWAT模型可以用于清水河流域的径流模拟。对未来气候和土地利用变化情景下径流的模拟结果显示,径流变化主要由降水变化主导,降水减少和气温升高的综合作用对流域径流变化影响最为显著;由于耕地和建设用地的增加,未来3种土地利用情景下流域径流量将均会呈现明显增加变化。与2010年相比,到2020年,自然增长情景流域径流将增加17.04%,林地保护情景径流将增加14.44%,规划情景径流将增加13.98%;综合降水、气温和土地利用的结合变化情景显示,未来流域径流将会有不同程度的下降,规划情景和气候变化的结合情景的径流下降最为明显,而有意增大林地和加强生态保护的林地保护情景对减缓流域径流下降具有一定作用。在气候变化的大背景下,根据水资源利用管理目标,可通过调整流域管理措施,特别是土地利用变化和改善区域小气候来减缓气候变化对流域水资源的负面效果,以此来改善流域径流和生态环境状况。  相似文献   

5.
Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change‐induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change‐induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water‐limited ecosystems.  相似文献   

6.
A cross‐site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere–ocean general circulation models (AOGCMs; CCSM4, HadGEM2‐CC, MIROC5, and MRI‐CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET‐BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce‐fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern United States. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrological responses to climate change.  相似文献   

7.
Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.  相似文献   

8.
Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high‐resolution (12 km) dynamically downscaled climate projections for 1995–2004 and 2085–2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems.  相似文献   

9.
Forest performance is challenged by climate change but higher atmospheric [CO2] (ca) could help trees mitigate the negative effect of enhanced water stress. Forest projections using data assimilation with mechanistic models are a valuable tool to assess forest performance. Firstly, we used dendrochronological data from 12 Mediterranean tree species (six conifers and six broadleaves) to calibrate a process‐based vegetation model at 77 sites. Secondly, we conducted simulations of gross primary production (GPP) and radial growth using an ensemble of climate projections for the period 2010–2100 for the high‐emission RCP8.5 and low‐emission RCP2.6 scenarios. GPP and growth projections were simulated using climatic data from the two RCPs combined with (i) expected ca; (ii) constant ca = 390 ppm, to test a purely climate‐driven performance excluding compensation from carbon fertilization. The model accurately mimicked the growth trends since the 1950s when, despite increasing ca, enhanced evaporative demands precluded a global net positive effect on growth. Modeled annual growth and GPP showed similar long‐term trends. Under RCP2.6 (i.e., temperatures below +2 °C with respect to preindustrial values), the forests showed resistance to future climate (as expressed by non‐negative trends in growth and GPP) except for some coniferous sites. Using exponentially growing ca and climate as from RCP8.5, carbon fertilization overrode the negative effect of the highly constraining climatic conditions under that scenario. This effect was particularly evident above 500 ppm (which is already over +2 °C), which seems unrealistic and likely reflects model miss‐performance at high ca above the calibration range. Thus, forest projections under RCP8.5 preventing carbon fertilization displayed very negative forest performance at the regional scale. This suggests that most of western Mediterranean forests would successfully acclimate to the coldest climate change scenario but be vulnerable to a climate warmer than +2 °C unless the trees developed an exaggerated fertilization response to [CO2].  相似文献   

10.
The magnitude of the nitrogen (N) limitation of terrestrial carbon (C) storage over the 21st century is highly uncertain because of the complex interactions between the terrestrial C and N cycles. We use an ensemble approach to quantify and attribute process‐level uncertainty in C‐cycle projections by analysing a 30‐member ensemble representing published alternative representations of key N cycle processes (stoichiometry, biological nitrogen fixation (BNF) and ecosystem N losses) within the framework of one terrestrial biosphere model. Despite large differences in the simulated present‐day N cycle, primarily affecting simulated productivity north of 40°N, ensemble members generally conform with global C‐cycle benchmarks for present‐day conditions. Ensemble projections for two representative concentration pathways (RCP 2.6 and RCP 8.5) show that the increase in land C storage due to CO2 fertilization is reduced by 24 ± 15% due to N constraints, whereas terrestrial C losses associated with climate change are attenuated by 19 ± 20%. As a result, N cycling reduces projected land C uptake for the years 2006–2099 by 19% (37% decrease to 3% increase) for RCP 2.6, and by 21% (40% decrease to 9% increase) for RCP 8.5. Most of the ensemble spread results from uncertainty in temperate and boreal forests, and is dominated by uncertainty in BNF (10% decrease to 50% increase for RCP 2.6, 5% decrease to 100% increase for RCP 8.5). However, choices about the flexibility of ecosystem C:N ratios and processes controlling ecosystem N losses regionally also play important roles. The findings of this study demonstrate clearly the need for an ensemble approach to quantify likely future terrestrial C–N cycle trajectories. Present‐day C‐cycle observations only weakly constrain the future ensemble spread, highlighting the need for better observational constraints on large‐scale N cycling, and N cycle process responses to global change.  相似文献   

11.
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large‐scale forest mortality events will have far‐reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die‐off patterns. Furthermore, as trees are sessile and long‐lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self‐thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole‐tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large‐scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.  相似文献   

12.
Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research’s Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21st century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.  相似文献   

13.
The direct effects of CO2 level changes on plant water availability are usually ignored in plant habitat models. We compare traditional proxies for water availability with changes in soil water (fAWC) predicted by a process-based ecosystem model, which simulates changes in vegetation structure and functioning, including CO2 physiological effects. We modelled current and future habitats of 108 European tree species using ensemble forecasting, comprising six habitat models, two model evaluation methods and two climate change scenarios. The fAWC models' projections are generally more conservative. Potential habitats shrink significantly less for boreo-alpine and alpine species. Changes in vegetation functioning and CO2 on plant water availability should therefore be taken into account in plant habitat change projections.  相似文献   

14.
水文变异条件下鄱阳湖流域的生态流量   总被引:9,自引:0,他引:9  
刘剑宇  张强  顾西辉 《生态学报》2015,35(16):5477-5485
受气候变化和人类活动综合影响,鄱阳湖流域水文状况发生变异。河流生态系统适应了变异前的水文状况,变异后势必会影响当地生态系统。基于此,采用8种变异检测方法对水文变异进行综合诊断,阐明水文变异原因。在此基础上,采用15种概率分布函数分别拟合5站各月变异前日流量序列,最终确定5站点各月最优分布函数及所对应的概率密度最大处的流量,即得河道内生态流量。研究表明:(1)抚河于1962年发生弱变异,赣江、修河于1968年发生中变异,信江、饶河于1991年发生弱变异;(2)变异后,赣江、信江、饶河、修河生态需水满足率平均上升11%,抚河生态需水满足率下降32%;(3)水文变异增加提高生态需水满足率,水利工程建设降低年均生态需水满足率、提高干季生态需水满足率。高森林覆盖率提高干季生态需水满足率,对年均生态需水满足率影响不明显。研究结果为鄱阳湖流域水资源管理及区域水资源规划与配置提供重要科学依据。  相似文献   

15.
Forest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long‐lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.  相似文献   

16.
康磊  刘世荣  刘宪钊 《生态学报》2016,36(5):1253-1262
采用Dmey小波变换法对岷江上游杂谷脑流域1959年至2006年月径流量、月平均气温和月降水量不同时间尺度下的变化周期进行分析,探讨三者在长时间序列周期性变化中的相互响应,并根据主周期预测未来气温、降水和径流的变化趋势,结果表明:气温、径流和降水存在多尺度周期性变化,在不同的尺度周期中,表现出不同的冷暖、丰枯和干湿的振荡规律,总体表现为由小尺度无明显规律的剧烈振荡向大尺度有明显规律的振荡变化。3个要素同以8—12个月的小尺度为周期剧烈振荡,在较大时间尺度上,具有明显规律振荡变化的周期分别为气温500个月、径流150个月和降水120个月。受森林砍伐的影响,研究区域在1962—1988年期间径流对降水变化的周期性响应迟钝,而在1988—2006年期间基本同步。根据大尺度周期性波动趋势预测,未来十几年研究区域处于偏暖的年代际背景下,未来6—7a为多雨期,但径流量偏少。  相似文献   

17.
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC‐AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water‐balance‐related parameters. Temperature‐dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon ‘dieback’ results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long‐term investments are required.  相似文献   

18.
漓江上游典型森林植被对降水径流的调节作用   总被引:3,自引:0,他引:3  
利用野外同步长期定位观测林外降雨、地表径流和河川径流的方法,对漓江上游典型森林植被的生态水文过程进行观测研究。结果表明:1)流域降水年内分配极不均匀,50a年降雨量总体变化趋势不明显。林冠截留受林外降雨特征的影响,也与植被类型密切相关。2)地表径流平均滞后时间为70 min。在连续降雨的情况下,降雨滞后效应不再明显,甚至出现地表径流与降雨同步的现象,小降雨可能产生大的地表径流,从而加大流域在雨季发生洪灾的风险。3)湿季径流系数略大于旱季,干季降水量减少,且森林植被消耗大量水分,减少了枯水期径流的产生,增大发生旱灾的风险。森林植被延长河川径流持续时间,使一次持续18 d的降水过程形成的径流,在降水停止后能延续24 d。降雨后退水持续时间与前期降水及后期降水叠加有关。目的为揭示漓江上游森林植被对降水径流的调节作用,客观评估漓江上游水资源潜力、加强流域水资源管理和森林经营提供科学依据。  相似文献   

19.
The European Union is highly dependent on soybean imports from overseas to meet its protein demands. Individual Member States have been quick to declare self-sufficiency targets for plant-based proteins, but detailed strategies are still lacking. Rising global temperatures have painted an image of a bright future for soybean production in Europe, but emerging climatic risks such as drought have so far not been included in any of those outlooks. Here, we present simulations of future soybean production and the most prominent risk factors across Europe using an ensemble of climate and soybean growth models. Projections suggest a substantial increase in potential soybean production area and productivity in Central Europe, while southern European production would become increasingly dependent on supplementary irrigation. Average productivity would rise by 8.3% (RCP 4.5) to 8.7% (RCP 8.5) as a result of improved growing conditions (plant physiology benefiting from rising temperature and CO2 levels) and farmers adapting to them by using cultivars with longer phenological cycles. Suitable production area would rise by 31.4% (RCP 4.5) to 37.7% (RCP 8.5) by the mid-century, contributing considerably more than productivity increase to the production potential for closing the protein gap in Europe. While wet conditions at harvest and incidental cold spells are the current key challenges for extending soybean production, the models and climate data analysis anticipate that drought and heat will become the dominant limitations in the future. Breeding for heat-tolerant and water-efficient genotypes is needed to further improve soybean adaptation to changing climatic conditions.  相似文献   

20.
董李勤  章光新  张昆 《生态学报》2015,35(18):6165-6172
探讨了嫩江流域湿地生态需水量的计算方法,并对流域内不同降水频率下湿地生态需水量进行了计算。在此基础上,选择CMIP全球气候模式下RCP2.6、RCP4.5和RCP8.5等3种排放情景,预测2030年、2050年和2100年嫩江流域湿地生态需水量的变化趋势。研究结果表明:不同降水频率下的流域湿地生态需水量分别为丰水年70.284亿m3,平水年118.696亿m3,枯水年169.343亿m3,反映了其与气候条件的相关性。3种排放情景下湿地生态需水量变化受到最高、最低气温和降水量变化的共同影响,其中RCP2.6情景下需水量呈先增加后减少的趋势;RCP4.5和RCP8.5情景下需水量整体呈增加趋势,到2100年分别达到147.337亿m3和132.659亿m3。气候变化条件下,如何协调水资源需求间的矛盾,维持湿地生态系统健康稳定,将是未来研究关注的重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号