首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GBV-C infection is associated with prolonged survival and with reduced T cell activation in HIV-infected subjects not receiving combination antiretroviral therapy (cART). The relationship between GBV-C and T cell activation in HIV-infected subjects was examined. HIV-infected subjects on cART with non-detectable HIV viral load (VL) or cART naïve subjects were studied. GBV-C VL and HIV VL were determined. Cell surface markers of activation (CD38+/HLA-DR+), proliferation (Ki-67+), and HIV entry co-receptor expression (CCR5+ and CXCR4+) on total CD4+ and CD8+ T cells, and on naïve, central memory (CM), effector memory (EM), and effector CD4+ and CD8+ subpopulations were measured by flow cytometry. In subjects with suppressed HIV VL, GBV-C was consistently associated with reduced activation in naïve, CM, EM, and effector CD4+ cells. GBV-C was associated with reduced CD4+ and CD8+ T cell surface expression of activation and proliferation markers, independent of HIV VL classification. GBV-C was also associated with higher proportions of naïve CD4+ and CD8+ T cells, and with lower proportions of EM CD4+ and CD8+ T cells. In conclusion, GBV-C infection was associated with reduced activation of CD4+ and CD8+ T cells in both HIV viremic and HIV RNA suppressed patients. Those with GBV-C infection demonstrated an increased proportion of naive T cells and a reduction in T cell activation and proliferation independent of HIV VL classification, including those with suppressed HIV VL on cART. Since HIV pathogenesis is thought to be accelerated by T cell activation, these results may contribute to prolonged survival among HIV infected individuals co-infected with GBV-C. Furthermore, since cART therapy does not reduce T cell activation to levels seen in HIV-uninfected people, GBV-C infection may be beneficial for HIV-related diseases in those effectively treated with anti-HIV therapy.  相似文献   

2.

Objectives

Counts of absolute CD4+ T lymphocytes (CD4+ T cells) are known to be highly variable in untreated HIV-infected individuals, but there are no data in virologically-suppressed individuals. We investigated CD4+ T cell variability in stable, virologically-suppressed, HIV-1 infected adults on combination antiretroviral therapy (cART).

Methods

From a large hospital database we selected patients with stable virological suppression on cART for >3 years with >10 CD4+ T cell measurements performed over a further >2 years; and a control group of 95 patients not on cART.

Results

We identified 161 HIV-infected patients on cART without active HCV or HBV infection, with stable virological suppression for a median of 6.4 years. Over the study period 88 patients had reached a plateau in their absolute CD4+ T cell counts, while 65 patients had increasing and 8 patients had decreasing absolute CD4+ T cell counts. In patients with plateaued CD4+ T cell counts, variability in absolute CD4+ T cell counts was greater than in percent CD4+ T cells (median coefficient of variation (CV) 16.6% [IQR 13.8-20.1%] and CV 9.6% [IQR 7.4-13.0%], respectively). Patients with increasing CD4+ T cell counts had greater variability in absolute CD4+ T cell counts than those with plateaued CD4 T cell counts (CV 19.5% [IQR 16.1-23.8%], p<0.001) while there was no difference in percent CD4+ T cell variability between the two groups. As previously reported, untreated patients had CVs significantly higher than patients on cART (CVs of 21.1% [IQR 17.2-32.0%], p<0.001 and 15.2% (IQR 10.7-20.0%), p<0.001, respectively). Age or sex did not affect the degree of CD4+ variation.

Conclusions

Adults with stable, virologically-suppressed HIV infection continue to have significant variations in individual absolute CD4+ T cell and percent CD4+ T cell counts; this variation can be of clinical relevance especially around CD4+ thresholds. However, the variation seen in individuals on cART is substantially less than in untreated subjects.  相似文献   

3.
Individuals infected with HIV frequently develop cytopenias and suppressed hematopoiesis. The role of direct HIV infection of hematopoietic progenitor cells in this process has not been defined. In this study, purified CD34+ bone marrow progenitor cells from 74 Zairian and American patients were studied by both coculture viral isolation and polymerase chain reaction for evidence of HIV infection. A total of 36.5% of Zairian and 14% of American patients had HIV infection of the CD34+ cell subset, with as many as 1 in 500 CD34+ cells infected. Most of the Zairian patients in this study had advanced HIV infection and markedly decreased CD4/CD8 T lymphocyte ratios (mean 0.160 +/- 0.08), and no laboratory value predicted the presence of infection in the CD34+ subset of a given Zairian individual. In contrast, American patients with CD34+ cell infection had total CD4 cells less than 20/mm3 and a greater decrease of the CD4/CD8 T lymphocyte ratio compared to seropositive Americans without CD34+ cell infection (p = 0.003). Hematopoiesis, studied by methylcellulose colony assays, was depressed in all seropositive patients studied with no significant further suppression when CD34+ cells were infected. Thus, CD34+ bone marrow progenitor cells are infected in vivo in a subset of seropositive individuals and may serve as an additional reservoir of virus in HIV-infected individuals.  相似文献   

4.
The strong CD8+ T-cell-mediated HIV-1-suppressive capacity found in a minority of HIV-infected patients in chronic infection is associated with spontaneous control of viremia. However, it is still unclear whether such capacities were also present earlier in the CD8+ T cells from non controller patients and then lost as a consequence of uncontrolled viral replication. We studied 50 patients with primary HIV-1-infection to determine whether strong CD8+ T-cell-mediated HIV suppression is more often observed at that time. Despite high frequencies of polyfunctional HIV-specific CD8+ T-cells and a strong CD4+ T-helper response, CD8+ T-cells from 48 patients lacked strong HIV-suppressive capacities ex vivo. This indicates that the superior HIV-suppressive capacity of CD8+ T-cells from HIV controllers is not a general characteristic of the HIV-specific CD8+ T cell response in primary HIV infection.  相似文献   

5.
Combination antiretroviral therapy (cART) reduces HIV-associated morbidities and mortalities but cannot cure the infection. Given the difficulty of eradicating HIV-1, a functional cure for HIV-infected patients appears to be a more reachable short-term goal. We identified 14 HIV patients (post-treatment controllers [PTCs]) whose viremia remained controlled for several years after the interruption of prolonged cART initiated during the primary infection. Most PTCs lacked the protective HLA B alleles that are overrepresented in spontaneous HIV controllers (HICs); instead, they carried risk-associated HLA alleles that were largely absent among the HICs. Accordingly, the PTCs had poorer CD8+ T cell responses and more severe primary infections than the HICs did. Moreover, the incidence of viral control after the interruption of early antiretroviral therapy was higher among the PTCs than has been reported for spontaneous control. Off therapy, the PTCs were able to maintain and, in some cases, further reduce an extremely low viral reservoir. We found that long-lived HIV-infected CD4+ T cells contributed poorly to the total resting HIV reservoir in the PTCs because of a low rate of infection of naïve T cells and a skewed distribution of resting memory CD4+ T cell subsets. Our results show that early and prolonged cART may allow some individuals with a rather unfavorable background to achieve long-term infection control and may have important implications in the search for a functional HIV cure.  相似文献   

6.
Human immunodeficiency virus (HIV)-infected CD8 lymphocytes have been reported in vivo, but the mechanism of infection remains unclear. Experiments using the thy/hu mouse model support export of intrathymically infected CD8 precursors, while recent in vitro data suggest that mature CD8 lymphocytes upregulate CD4 upon activation (generating a CD8bright CD4dim phenotype) and are susceptible to HIV infection. To determine whether these mechanisms operate in vivo and to assess their relative importance in the generation of circulating HIV-infected CD8 lymphocytes, we quantified HIV long terminal repeat (LTR) DNA in CD8+ CD4- and CD8bright CD4dim lymphocytes isolated from HIV-infected individuals by fluorescence-activated cell sorting. HIV infection of CD8 lymphocytes was demonstrated in 17 of 19 subjects, with a significant inverse relationship between level of infection and CD4 lymphocyte count (R = -0.73; P < 0.001). The level of HIV infection of CD8bright CD4dim lymphocytes was significantly higher (median, 1,730 HIV LTR copies/10(6) cells; n = 9) than that of CD8+ CD4- lymphocytes (undetectable in seven of nine individuals; P < 0.01) and approached that of CD4 lymphocytes from the same individuals (median, 3,660 HIV LTR copies/10(6) cells). CD8bright CD4dim lymphocytes represented 0.8 to 3.3% of total CD8 lymphocytes and were most prevalent in the memory subset. Thus, HIV-infected CD8 lymphocytes commonly circulate in HIV-infected individuals and are generated through infection of activated CD8 lymphocytes rather than through export of intrathymically infected precursors. The high level of infection of CD8bright CD4dim lymphocytes could have a direct role in the decline in CD8 lymphocyte function that accompanies HIV disease progression.  相似文献   

7.
FcRγ is an ITAM-containing adaptor required for CD16 signaling and function in NK cells. We have previously shown that NK cells from HIV patients receiving combination antiretroviral therapy (cART) have decreased FcRγ expression, but the factors causing this are unknown. We conducted a cross-sectional study of cART-naive viremic patients (ART(-)), virologically suppressed patients receiving cART (ART(+)), and HIV-uninfected controls. CD8(+) T cells were activated, as assessed by CD38(+)HLA-DR(+) expression, in ART(-) patients (p < 0.0001), which was significantly reduced in ART(+) patients (p = 0.0005). In contrast, CD38(+)HLA-DR(+) NK cells were elevated in ART(-) patients (p = 0.0001) but did not decrease in ART(+) patients (p = 0.88). NK cells from both ART(-) and ART(+) patients showed high levels of spontaneous degranulation in ex vivo whole blood assays as well as decreased CD16 expression (p = 0.0001 and p = 0.0025, respectively), FcRγ mRNA (p < 0.0001 for both groups), FcRγ protein expression (p = 0.0016 and p < 0.0001, respectively), and CD16-dependent Syk phosphorylation (p = 0.0001 and p = 0.003, respectively). HIV-infected subjects showed alterations in NK activation, degranulation, CD16 expression and signaling, and elevated plasma markers of inflammation and macrophage activation, that is, neopterin and sCD14, which remained elevated in ART(+) patients. Alterations in NK cell measures did not correlate with viral load or CD4 counts. These data show that in HIV patients who achieve viral suppression following cART, NK cell activation persists. This suggests that NK cells respond to factors different from those driving T cell activation, but which are associated with inflammation in HIV patients.  相似文献   

8.
The mechanism by which CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals suppress HIV replication in acutely infected CD4+ T cells was investigated. Cytotoxicity was not involved, as the antiviral activity of the CD8+ cells did not correlate with the ability to lyse HIV-infected or uninfected CD4+ T cells. In addition, the frequency of HIV-infected CD4+ cells increased during coculture with CD8+ T cells even in the absence of detectable levels of virus replication. Moreover, separation of the CD4+ and CD8+ cells by a 0.4-micron-pore-size filter delayed HIV replication, indicating a role, at least in part, for a soluble factor. However, cell contact was required for optimal antiviral activity. These results extend further the observation on the mechanism of antiviral HIV activity by CD8+ cells from infected individuals. They support the conclusion that CD8+ cells can play a major role in preventing development of disease in HIV-infected individuals.  相似文献   

9.
Peripheral blood CD4+ T cell counts are a key measure for assessing disease progression and need for antiretroviral therapy in HIV-infected patients. More recently, studies have demonstrated a dramatic depletion of mucosal CD4+ T cells during acute infection that is maintained during chronic pathogenic HIV as well as SIV infection. A different clinical disease course is observed during the infection of natural hosts of SIV infection, such as sooty mangabeys (Cercocebus atys), which typically do not progress to AIDS. Previous studies have determined that SIV+ mangabeys generally maintain healthy levels of CD4+ T cells despite having viral replication comparable to HIV-infected patients. In this study, we identify the emergence of a multitropic (R5/X4/R8-using) SIV infection after 43 or 71 wk postinfection in two mangabeys that is associated with an extreme, persistent (>5.5 years), and generalized loss of CD4+ T cells (5-80 cells/microl of blood) in the absence of clinical signs of AIDS. This study demonstrates that generalized CD4+ T cell depletion from the blood and mucosal tissues is not sufficient to induce AIDS in this natural host species. Rather, AIDS pathogenesis appears to be the cumulative result of multiple aberrant immunologic parameters that include CD4+ T cell depletion, generalized immune activation, and depletion/dysfunction of non-CD4+ T cells. Therefore, these data provide a rationale for investigating multifaceted therapeutic strategies to prevent progression to AIDS, even following dramatic CD4 depletion, such that HIV+ humans can survive normal life spans analogous to what occurs naturally in SIV+ mangabeys.  相似文献   

10.
It has been suggested that CD4+ T cell proliferative responses to HIV p24 Ag may be important in the control of HIV infection. However, these responses are minimal or absent in many HIV-infected individuals. Furthermore, while in vitro and in vivo responses to non-HIV recall Ags improve upon administration of highly active antiretroviral therapy, there does not appear to be a commensurate enhancement of HIV-specific immune responses. It is possible that CD4+ p24-specific T cells are deleted early in the course of infection. However, it is also possible that a discrete unresponsiveness, or anergy, contributes to the lack of proliferation to p24. To evaluate the possible contribution of unresponsiveness to the lack of CD4+ T cell proliferation to p24 in HIV-infected individuals, we attempted to overcome unresponsiveness. CD40 ligand trimer (CD40LT) and IL-12 significantly increased PBMC and CD4+ T cell proliferative responses to p24 Ag in HIV-infected, but not uninfected, individuals. No increase in proliferative response to CMV Ag was observed. CD40LT exerted its effect through B7-CD28-dependent and IL-12- and IL-15-independent mechanisms. Finally, the increase in proliferation with CD40LT and IL-12 was associated with an augmented production of IFN-gamma in most, but not all, individuals. These data suggest the possible contribution of HIV-specific unresponsiveness to the lack of CD4+ T cell proliferation to p24 Ag in HIV-infected individuals and that clonal deletion alone does not explain this phenomenon. They also indicate the potential for CD40LT and IL-12 as immune-based therapies for HIV infection.  相似文献   

11.
Regulatory T (Treg) cells may attenuate host immune responses to pathogens, including HIV and opportunistic pathogens in HIV-infected patients. Treated and untreated progressive HIV disease represent a range of immunological scenarios with potentially different roles for Treg cells. A cell surface marker to determine Treg cell numbers would assist in identifying situations where Treg cells are important. Here we show that levels of Foxp3 mRNA are increased in CD4+ T cells from HIV-infected patients responding to antiretroviral therapy. However, the proportion of peripheral blood CD4+ and CD8+ T cells expressing CD25, neuropilin-1, glucocorticoid-induced TNF receptor and lymphocyte activation gene-3 did not differ as a result of treated or untreated HIV infection when compared with HIV-seronegative controls. Hence, none of the putative Treg cell surface markers identified T-cell populations in peripheral blood that mirrored the effects of HIV infection and antiretroviral therapy on Foxp3 expression.  相似文献   

12.
HIV infection is associated with depletion of intestinal CD4(+) T cells, resulting in mucosal immune dysfunction, microbial translocation, chronic immune activation, and progressive immunodeficiency. In this study, we examined HIV-infected individuals with active virus replication (n = 15), treated with antiretroviral therapy (n = 13), and healthy controls (n = 11) and conducted a comparative analysis of T cells derived from blood and four gastrointestinal (GI) sites (terminal ileum, right colon, left colon, and sigmoid colon). As expected, we found that HIV infection is associated with depletion of total CD4(+) T cells as well as CD4(+)CCR5(+) T cells in all GI sites, with higher levels of these cells found in ART-treated individuals than in those with active virus replication. While the levels of both CD4(+) and CD8(+) T cell proliferation were higher in the blood of untreated HIV-infected individuals, only CD4(+) T cell proliferation was significantly increased in the gut of the same patients. We also noted that the levels of CD4(+) T cells and the percentages of CD4(+)Ki67(+) proliferating T cells are inversely correlated in both blood and intestinal tissues, thus suggesting that CD4(+) T cell homeostasis is similarly affected by HIV infection in these distinct anatomic compartments. Importantly, the level of intestinal CD4(+) T cells (both total and Th17 cells) was inversely correlated with the percentage of circulating CD4(+)Ki67(+) T cells. Collectively, these data confirm that the GI tract is a key player in the immunopathogenesis of HIV infection, and they reveal a strong association between the destruction of intestinal CD4(+) T cell homeostasis in the gut and the level of systemic CD4(+) T cell activation.  相似文献   

13.
BACKGROUND: Binding of fluorochrome-conjugated MHC class I tetramers is a powerful means to detect antigen-specific CD8 T lymphocytes. In human immunodeficiency virus (HIV) infection, cellular immune response is essential in curtailing HIV disease progression but gaps persist in our understanding of HIV-specific cells during the disease course. In this study, we evaluated tetramer binding HIV-specific CD8 T cells in HIV-infected children. METHODS: Fluorescently labeled tetramers for HIV gag and pol were utilized to quantify antigen-specific cells by flow cytometry using a whole blood labeling method in a cohort of 19 HLA-A2+ HIV-infected children (age range 1 month to 17 years). RESULTS: Fourteen children had detectable gag (median 0.4%) and pol (median 0.1%) binding CD8 T cells, three children had gag binding cells only, and two had neither. Numbers of gag and pol binding cells correlated with each other and each correlated independently with total CD8 T cells and total CD4 T cells. CONCLUSIONS: HIV gag and pol-specific CD8 T cells are maintained during the chronic phase of HIV infection in children and CD4 lymphocytes appear to be important for sustaining their levels.  相似文献   

14.
In order to characterize the cellular composition of cerebrospinal fluid (CSF) in a healthy state and in the setting of chronic pleocytosis associated with HIV-1 (HIV) infection, multi-parameter flow cytometry was used to identify and quantitate cellular phenotypes in CSF derived from HIV-uninfected healthy controls and HIV-infected subjects across a spectrum of disease and treatment. CD4+ T cells were the most frequent CSF population and the CD4:CD8 ratio was significantly increased in the CSF compared to blood (p = 0.0232), suggesting preferential trafficking of CD4+ over CD8+ T cells to this compartment. In contrast, in HIV-infection, CD8+ T cells were the major cellular component of the CSF and were markedly increased compared to HIV-uninfected subjects (p<0.001). As with peripheral blood, the CSF CD4:CD8 ratio was reversed in HIV-infected subjects compared to HIV-uninfected subjects. Monocytes, B cells and NK cells were rare in the CSF in both groups, although absolute counts of CSF NK cells and B cells were significantly increased in HIV-infected subjects (p<0.05). Our studies show that T cells are the major cellular component of the CSF in HIV-infected and uninfected subjects. The CSF pleocytosis characteristic of HIV infection involves all lymphocyte subsets we measured, except for CD4+ T cells, but is comprised primarily of CD8+ T cells. The reduced proportion of CD4+ T cells in the CSF may reflect both HIV-related peripheral loss and changes in trafficking patterns in response to HIV infection in the central nervous system.  相似文献   

15.

Background

HIV leads to CD4:CD8 ratio inversion as immune dysregulation progresses. We examined the predictors of CD4:CD8 normalization after combination antiretroviral therapy (cART) and determined whether normalization is associated with reduced progression to AIDS-defining illnesses (ADI) and death.

Methods

A Canadian cohort of HIV-positive adults with CD4:CD8<1.2 prior to starting cART from 2000–2010 were analyzed. Predictors of (1) reaching a CD4:CD8 ≥1.2 on two separate follow-up visits >30 days apart, and (2) ADI and death from all causes were assessed using adjusted proportional hazards models.

Results

4206 patients were studied for a median of 2.77 years and 306 (7.2%) normalized their CD4:CD8 ratio. Factors associated with achieving a normal CD4:CD8 ratio were: baseline CD4+ T-cells >350 cells/mm3, baseline CD8+ T-cells <500 cells/mm3, time-updated HIV RNA suppression, and not reporting sex with other men as a risk factor. There were 213 ADIs and 214 deaths in 13476 person-years of follow-up. Achieving a normal CD4:CD8 ratio was not associated with time to ADI/death.

Conclusions

In our study, few individuals normalized their CD4:CD8 ratios within the first few years of initiating modern cART. This large study showed no additional short-term predictive value of the CD4:CD8 ratio for clinical outcomes after accounting for other risk factors including age and HIV RNA.  相似文献   

16.
HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers) often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg) response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+), regulatory (CD4+CD25+CD127(dim)), HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed), untreated HIV-infected "non-controllers" with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014). Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P ≤ 0.001). These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion.  相似文献   

17.
The incidence of (EBV-related) malignancies in HIV-infected subjects has declined since the introduction of highly active antiretroviral therapy (HAART). To investigate the effect of HAART on EBV infection, we performed a longitudinal analysis of the T cell response to both a latent and a lytic Ag and EBV viral load in 10 subjects from early in HIV infection up to 5 years after HAART. All individuals responded to HAART by a decline in HIV viral load, a restoration of total CD4+ T cell numbers, and a decline in T cell immune activation. Despite this, EBV load remained unaltered, even after 5 years of therapy, although a decline in both CD4+ and CD8+ T cells specific for the lytic EBV protein BZLF1 suggested a decreased EBV reactivation rate. In contrast, latent EBV Ag EBNA1-specific CD4+ and CD8+ T cell responses were restored after 5 years of treatment to levels comparable to healthy individuals. In two individuals who were treated by HAART late during HIV progression, a lymphoma developed shortly after initiation of HAART, despite restoration of EBV-specific CD4+ and CD8+ T cells. In conclusion, long-term HAART does not alter the EBV DNA load, but does lead to a restoration of EBNA1-specific T cell responses, which might allow better control of EBV-infected cells when applied early enough during HIV infection.  相似文献   

18.
IL-10 producing T cells inhibit Ag-specific CD8+ T cell responses and may play a role in the immune dysregulation observed in HIV infection. We have previously observed the presence of HIV-specific IL-10-positive CD8+ T cells in advanced HIV disease. In this study, we examined the suppressive function of the Gag-specific IL-10-positive CD8+ T cells. Removal of these IL-10-positive CD8+ T cells resulted in increased cytolysis and IL-2, but not IFN-gamma, production by both HIV- and human CMV-specific CD8+ T cells. In addition, these IL-10-positive CD8+ T cells mediated suppression through direct cell-cell contact, and had a distinct immunophenotypic profile compared with other regulatory T cells. We describe a new suppressor CD8+ T cell population in advanced HIV infection that may contribute to the immune dysfunction observed in HIV infection.  相似文献   

19.
Our objective was to study the alterations of CD4(+) CD25(+) Foxp3(+) T(regs) in HIV-infected SPs and to examine the role of T(regs) in the disease progression of HIV. The proportion of CD4(+) CD25(+) Foxp3(+) T(regs) in peripheral blood of 24 SPs, 30 asymptomatic HIV-infected patients, 20 AIDS patients, and 16 non-infected controls was quantified using flow cytometry. HIV Gag peptide mix-induced IFN-γ expression in CD8(+) T cells in whole and CD25-depleted PBMCs was examined to evaluate the function of T(regs) . The expression of CTLA-4 in T(regs) was also detected to measure the suppressive effect of T(regs) . HLA-DR and CD38 expression were measured to study the relationship between the frequency of T(regs) and immune activation of HIV-infected patients. The frequency of CD4(+) CD25(+) Foxp3(+) regulatory T cells in SPs was lower than in asymptomatic HIV-infected patients, AIDS patients, and normal controls (P < 0.05). T(regs) in SPs showed lower intracellular CTLA-4 expression than those of asymptomatic HIV-infected patients and AIDS patients (P < 0.05). The frequency of T(regs) significantly correlated with the percentage of CD38 expression on CD4(+) and CD8(+) T cells (P < 0.05). Multivariate regression analysis showed that the CD4(+) T cell count was the strongest independent factor correlated with the absolute count of T(regs) , while viral load had the strongest predictive strength on the proportion of T(regs) . We conclude that a lower frequency of T(regs) and intracellular CTLA-4 expression of T(regs) was one of the characteristics of SPs that may have important clinical impacts for the prediction of the clinical progress of HIV infection.  相似文献   

20.

Background

We examined the effect of cytomegalovirus (CMV) co-infection and viremia on reconstitution of selected CD4+ and CD8+ T-cell subsets in perinatally HIV-infected (PHIV+) children ≥ 1-year old who participated in a partially randomized, open-label, 96-week combination antiretroviral therapy (cART)-algorithm study.

Methods

Participants were categorized as CMV-naïve, CMV-positive (CMV+) viremic, and CMV+ aviremic, based on blood, urine, or throat culture, CMV IgG and DNA polymerase chain reaction measured at baseline. At weeks 0, 12, 20 and 40, T-cell subsets including naïve (CD62L+CD45RA+; CD95-CD28+), activated (CD38+HLA-DR+) and terminally differentiated (CD62L-CD45RA+; CD95+CD28-) CD4+ and CD8+ T-cells were measured by flow cytometry.

Results

Of the 107 participants included in the analysis, 14% were CMV+ viremic; 49% CMV+ aviremic; 37% CMV-naïve. In longitudinal adjusted models, compared with CMV+ status, baseline CMV-naïve status was significantly associated with faster recovery of CD8+CD62L+CD45RA+% and CD8+CD95-CD28+% and faster decrease of CD8+CD95+CD28-%, independent of HIV VL response to treatment, cART regimen and baseline CD4%. Surprisingly, CMV status did not have a significant impact on longitudinal trends in CD8+CD38+HLA-DR+%. CMV status did not have a significant impact on any CD4+ T-cell subsets.

Conclusions

In this cohort of PHIV+ children, the normalization of naïve and terminally differentiated CD8+ T-cell subsets in response to cART was detrimentally affected by the presence of CMV co-infection. These findings may have implications for adjunctive treatment strategies targeting CMV co-infection in PHIV+ children, especially those that are now adults or reaching young adulthood and may have accelerated immunologic aging, increased opportunistic infections and aging diseases of the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号