首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dosage compensation is a specialized form of gene regulation that balances sex-chromosome linked gene expression between the sexes. In C. elegans, dosage compensation is achieved by the activity of the dosage compensation complex (DCC). The DCC binds along both X chromosomes in hermaphrodites to down-regulate gene expression by half, limiting X-linked gene products to levels produced in XO males. Sequence motifs enriched on the X chromosome play an important role in targeting the DCC to the X. However, these motifs are not strictly X-specific and therefore other factors, such as the chromatin environment of the X chromosome, are likely to aid in DCC targeting. Previously, we found that loss of HTZ-1 results in partial disruption of dosage compensation localization to the X chromosomes. We wanted to know whether other chromatin components coordinated with HTZ-1 to regulate DCC localization. One candidate is DPY-30, a protein known to play a role in DCC localization. DPY-30 homologs in yeast, flies, and mammals are highly conserved members of histone H3 lysine 4 (H3K4) methyltransferase Set1/MLL complexes. Therefore, we investigated the hypothesis that the dosage compensation function of DPY-30 involves H3K4 methylation. We found that in dpy-30 animals the DCC fails to stably bind chromatin. Interestingly, of all the C. elegans homologs of Set1/MLL complex subunits, only DPY-30 is required for stable DCC binding to chromatin. Additionally, loss of H3K4 methylation does not enhance DCC mislocalization in htz-1 animals. We conclude that DPY-30 and HTZ-1 have unique functions in DCC localization, both of which are largely independent of H3K4 methylation.  相似文献   

3.
Dosage compensation in male Drosophila relies on the X chromosome–specific recruitment of a chromatin-modifying machinery, the dosage compensation complex (DCC). The principles that assure selective targeting of the DCC are unknown. According to a prevalent model, X chromosome targeting is initiated by recruitment of the DCC core components, MSL1 and MSL2, to a limited number of so-called “high-affinity sites” (HAS). Only very few such sites are known at the DNA sequence level, which has precluded the definition of DCC targeting principles. Combining RNA interference against DCC subunits, limited crosslinking, and chromatin immunoprecipitation coupled to probing high-resolution DNA microarrays, we identified a set of 131 HAS for MSL1 and MSL2 and confirmed their properties by various means. The HAS sites are distributed all over the X chromosome and are functionally important, since the extent of dosage compensation of a given gene and its proximity to a HAS are positively correlated. The sites are mainly located on non-coding parts of genes and predominantly map to regions that are devoid of nucleosomes. In contrast, the bulk of DCC binding is in coding regions and is marked by histone H3K36 methylation. Within the HAS, repetitive DNA sequences mainly based on GA and CA dinucleotides are enriched. Interestingly, DCC subcomplexes bind a small number of autosomal locations with similar features.  相似文献   

4.
It has been proposed that dosage compensation in Drosophila males occurs by binding of two core proteins, MSL-1 and MSL-2, to a set of 35–40 X chromosome “entry sites” that serve to nucleate mature complexes, termed compensasomes, which then spread to neighboring sequences to double expression of most X-linked genes. Here we show that any piece of the X chromosome with which compensasomes are associated in wild-type displays a normal pattern of compensasome binding when inserted into an autosome, independently of the presence of an entry site. Furthermore, in chromosomal rearrangements in which a piece of X chromosome is inserted into an autosome, or a piece of autosome is translocated to the X chromosome, we do not observe spreading of compensasomes to regions of autosomes that have been juxtaposed to X chromosomal material. Taken together these results suggest that spreading is not involved in dosage compensation and that nothing distinguishes an entry site from the other X chromosome sites occupied by compensasomes beyond their relative affinities for compensasomes. We propose a new model in which the distribution of compensasomes along the X chromosome is achieved according to the hierarchical affinities of individual binding sites.  相似文献   

5.
Although the existence of histone variants has been known for quite some time, only recently are we grasping the breadth and diversity of the cellular processes in which they are involved. Of particular interest are the two variants of histone H2A, H2A.Z and H2A.X because of their roles in regulation of gene expression and in DNA double-strand break repair, respectively. We hypothesize that nucleosomes containing these variants may perform their distinct functions by interacting with different sets of proteins. Here, we present our proteome analysis aimed at identifying protein partners that interact with nucleosomes containing H2A.Z, H2A.X or their canonical H2A counterpart. Our development of a nucleosome-pull down assay and analysis of the recovered nucleosome-interacting proteins by mass spectrometry allowed us to directly compare nuclear partners of these variant-containing nucleosomes to those containing canonical H2A. To our knowledge, our data represent the first systematic analysis of the H2A.Z and H2A.X interactome in the context of nucleosome structure.  相似文献   

6.
7.
8.
Dosage compensation in Drosophila melanogaster involves the selective targeting of the male X chromosome by the dosage compensation complex (DCC) and the coordinate, ∼2-fold activation of most genes. The principles that allow the DCC to distinguish the X chromosome from the autosomes are not understood. Targeting presumably involves DNA sequence elements whose combination or enrichment mark the X chromosome. DNA sequences that characterize ‘chromosomal entry sites’ or ‘high-affinity sites’ may serve such a function. However, to date no DNA binding domain that could interpret sequence information has been identified within the subunits of the DCC. Early genetic studies suggested that MSL1 and MSL2 serve to recognize high-affinity sites (HAS) in vivo, but a direct interaction of these DCC subunits with DNA has not been studied. We now show that recombinant MSL2, through its CXC domain, directly binds DNA with low nanomolar affinity. The DNA binding of MSL2 or of an MSL2–MSL1 complex does not discriminate between different sequences in vitro, but in a reporter gene assay in vivo, suggesting the existence of an unknown selectivity cofactor. Reporter gene assays and localization of GFP-fusion proteins confirm the important contribution of the CXC domain for DCC targeting in vivo.  相似文献   

9.
10.
11.
12.
13.
14.
H2A.Z是组蛋白H2A的变异体之一,是高度保守的组蛋白变异体,参与保护常染色体,防止形成异染色质;并且与转录调节、抗沉默、沉默和基因组稳定性有关。组蛋白变异体H2A.Z可能与染色体形成独立的结构域,从而调节染色质结构功能。但是,H2A.Z对染色体结构功能的作用机制还不是很清楚。组蛋白变异体H2A.Z和它的表观遗传修饰对染色体动态结构和功能起重要的作用。该文将对组蛋白变异体H2A.Z进行综述。  相似文献   

15.
16.
Structural comparisons of mouse histones 2A.X and 2A.Z with 2A.1 and 2A.2   总被引:4,自引:0,他引:4  
The tryptic peptide patterns of the recently described H2A species H2A.X and H2A.Z from mouse were compared with the tryptic peptide patterns of the major mouse H2A's, H2A.1 and H2A.2. The identities of the H2A.1 peptides were determined by comparing their in vivo labeling with various 14C-labeled amino acids with the expected labeling determined from the known sequence. All the H2A.1 tryptic peptides larger than dipeptides were accounted for. The procedure was repeated for H2A.2, H2A.X and H2A.Z. H2A.X was found to have large regions of sequence identical to that of H2A.1 with the variability occurring mainly near the N and C termini. Mouse H2A.X had some sequence characteristics found in the sequenced H2A's of trout and sea urchin. In contrast, H2A.Z was found to have only two peptides in common with H2A.1; in addition, the labeling patterns of the non-identical peptides were too different to suggest analogous peptides. We conclude from these studies that H2A.Z differs considerably from H2A.1 in major portions of its sequence.  相似文献   

17.
Histone variants are used by the cell to build specialized nucleosomes, replacing canonical histones and generating functionally specialized chromatin domains. Among many other processes, the specialization imparted by histone H2A (H2A.X and H2A.Z) variants to the nucleosome core particle constitutes the earliest response to DNA damage in the cell. Consequently, chromatin-based genotoxicity tests have been developed in those cases where enough information pertaining chromatin structure and dynamics is available (i.e., human and mouse). However, detailed chromatin knowledge is almost absent in most organisms, specially protostome animals. Molluscs (which represent sentinel organisms for the study of pollution) are not an exception to this lack of knowledge. In the present work we first identified the existence of functionally differentiated histone H2A.X and H2A.Z variants in the mussel Mytilus galloprovincialis (MgH2A.X and MgH2A.Z), a marine organism widely used in biomonitoring programs. Our results support the functional specialization of these variants based on: a) their active expression in different tissues, as revealed by the isolation of native MgH2A.X and MgH2A.Z proteins in gonad and hepatopancreas; b) the evolutionary conservation of different residues encompassing functional relevance; and c) their ability to confer specialization to nucleosomes, as revealed by nucleosome reconstitution experiments using recombinant MgH2A.X and MgH2A.Z histones. Given the seminal role of these variants in maintaining genomic integrity and regulating gene expression, their preliminary characterization opens up new potential applications for the future development of chromatin-based genotoxicity tests in pollution biomonitoring programs.  相似文献   

18.
19.
Controlling the degree of higher order chromatin folding is a key element in partitioning the metazoan genome into functionally distinct chromosomal domains. However, the mechanism of this fundamental process is poorly understood. Our recent studies suggested that the essential histone variant H2A.Z and the silencing protein HP1alpha may function together to establish a specialized conformation at constitutive heterochromatic domains. We demonstrate here that HP1alpha is a unique chromatin binding protein. It prefers to bind to condensed higher order chromatin structures and alters the chromatin-folding pathway in a novel way to locally compact individual chromatin fibers without crosslinking them. Strikingly, both of these features are enhanced by an altered nucleosomal surface created by H2A.Z (the acidic patch). This shows that the surface of the nucleosome can regulate the formation of distinct higher order chromatin structures mediated by an architectural chromatin binding protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号