首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In intact soleus and extensor digitorum longus muscles obtained from lean and obese mice, the number of [3H]-ouabain binding sites showed no significant difference. In the same muscles obtained from obese mice, the Na+-K+-pump mediated [42K]-uptake was respectively 39 and 33% larger than in those of lean littermates. This together with the earlier observation that intact muscles require at most 6% of their basal energy production for active Na+-K+-transport indicates that this process is of no quantitative importance for development of obesity.  相似文献   

2.
Yokokawa M  Takeyasu K 《The FEBS journal》2011,278(17):3025-3031
Studies of ion pumps, such as ATP synthetase and Ca(2+)-ATPase, have a long history. The crystal structures of several kinds of ion pump have been resolved, and provide static pictures of mechanisms of ion transport. In this study, using fast-scanning atomic force microscopy, we have visualized conformational changes in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) in real time at the single-molecule level. The analyses of individual SERCA molecules in the presence of both ATP and free Ca(2+) revealed up-down structural changes corresponding to the Albers-Post scheme. This fluctuation was strongly affected by the ATP and Ca(2+) concentrations, and was prevented by an inhibitor, thapsigargin. Interestingly, at a physiological ATP concentrations, the up-down motion disappeared completely. These results indicate that SERCA does not transit through the shortest structure, and has a catalytic pathway different from the ordinary Albers-Post scheme under physiological conditions.  相似文献   

3.
Localization of Na+-pump sites in frog skin   总被引:12,自引:6,他引:6       下载免费PDF全文
The localization of Na+-pump sites (Na+-K+-ATPase) in the frog skin epithelium was determined by a freeze-dry radioautographic method for identifying [3H]ouabain-binding sites. Ventral pelvic skins of Rana catesbeiana were mounted in Ussing chambers and exposed to 10(-6) M [3H]ouabain for 120 min, washed in ouabain-free Ringer's solution for 60 min, and then processed for radioautography. Ouabain-binding sites were localized on the inward facing (serosal) membranes of all the living cells. Quantitative analysis of grain distribution showed that the overwhelming majority of Na+-pump sites were localized deep to the outer living cell layer, i.e., in the stratum spinosum and stratum germinativum. Binding of ouabain was correlated with inhibition of Na+ transport. Specificity of ouabain binding to Na+-K+-ATPase was verified by demonstrating its sensitivity to the concentration of ligands (K+, ATP) that affect binding of ouabain to the enzyme. Additional studies supported the conclusion that the distribution of bound ouabain reflects the distribution of those pumps involved in the active transepithelial transport of Na+. After a 30-min exposure to [3H]ouabain, Na+ transport declined to a level that was significantly less than that in untreated paired controls, and analysis of grain distribution showed that over 90% of the ouabain-binding sites were localized to the inner cell layers. Furthermore, in skins where Na+ transport had been completely inhibited by exposure to 10(-5) M ouabain, the grain distribution was identical to that in skins exposed to 10(-6) M. The results support a model which depicts all the living cell layers functioning as a syncytium with regard to the active transepithelial transport of Na+.  相似文献   

4.
Three phosphorylated reaction intermediates (EP) of Na,K-ATPase, and ADP-sensitive K+-insensitive EP (E1P), an ADP- and K+-sensitive EP (E*P), and a K+-sensitive ADP-insensitive EP (E2P), have been discovered at present. By using Na,K-ATPase proteoliposomes (PL) prepared from the electric eel enzyme, we found in this study that E*P existed even in the presence of K+ on both sides of the PL and that there was a sidedness difference in K+ sites between E*P and E2P. Cytoplasmic K+ (K+cyt) accelerated the conversion of E*P to E2P but did not dephosphorylate the E2P. Although the extracellular K+ accelerated the dephosphorylation of E2P, it did not interact with E*P directly. This K+cyt effect was also verified by the activation of Na+-pump in the Na+-K+ exchange mode. In the presence of K+cyt, both the ATP hydrolysis and Na+ uptake rates of the PL containing K+ inside vesicles increased sigmoidally with the concentrations of ATP and cytoplasmic Na+ (Na+cyt). However, in the absence of K+cyt, these Na+-pump reactions in PL containing K+ inside vesicles had only a hyperbolic curve. These results imply that the E*P to E2P conversion is one of the rate-limiting steps of the Na+-pump in the presence of a high concentration of ATP and that K+cyt may control this reaction step by enhancing the conversion rate of E*P to E2P.  相似文献   

5.
A Na+-pump inhibitor was purified from 140 liters of human urine to an apparent homogeneity. Tracing of the inhibitor during the different steps of purification was achieved by simultaneous determination of its capacity to inhibit the activity of Na+,K+-ATPase and ouabain binding, and to cross-react with antidigoxin antibodies. The final purification achieved a 400,000 fold. The purification steps included flash chromatography, anionic exchange chromatography, and reversed-phase HPLC on RP18, diphenyl and phenyl packings. NMR studies indicated that the final product was a non-peptidic, possibly steroidal compound. Its molecular weight as determined by mass spectrometry was 431.  相似文献   

6.
7.
Europium luminescence from europium bound to sarcoplasmic reticulum (Ca2+ Mg2+)-ATPase indicates that there are two high affinity calcium binding sites. Furthermore, the two calcium ions at the binding sites are highly coordinated by the protein as the number of H2O molecules surrounding the Ca2+ ions are 3 and 0.5. In the presence of ATP, calcium ions are occluded even further down to 2 and zero H2O molecules, respectively. The Ca2+ - Ca2+ intersite distance is estimated to be 8–9 Å and the average distance from the Ca2+ sites to CrATP is about 18 Å.Digestion of the (Ca2+ + Mg2+)-ATPase at the T2 site (Arg 198) causes uncoupling of Ca2+-transport from ATPase activity while calcium occlusion due to E1-P formation remains unchanged. Further tryptic digestion beyond T2 and in the presence of ATP diminishes Ca2+ occlusion to zero while 50% of the ATPase hydrolytic activity remains. Tryptic digestion beyond T2 and in the absence of ATP diminishes ATPase hydrolytic activity to 50% of normal while Ca2+ occlusion remains intact. These data are consistent with a mechanism in which the functional enzyme must be in the dimeric form for occlusion and calcium uptake to occur, but each monomer can hydrolyze ATP.  相似文献   

8.
9.
10.
The characteristics of Ca(2+)-pump in smooth muscle of the rabbit small intestine were established. It was shown that Ca(2+)-pump was activated by the calmodulin and blocked by the oxytocin.  相似文献   

11.
There are three techniques for the localization of intraepithelial Na+, K+-ATPase (usually equated with the Na+-pump) that offer reasonable specificity and resolution: the nitrophenylphosphatase assay of Ernst, the immunoferritin procedure of Kyte, and the radioautographic localization of tritiated ouabain as developed by Stirling. These have now been applied to a wide range of epithelia covering the four classes of interest here: isotonic and hypertonic absorbers and isotonic and hypertonic secretors. A review of published results reveals that in every case (except for the choroid plexus) the enzyme is preferentially located on the basolateral surface of the transporting epithelial cells so that a simple correlation of structure and function in terms of the Koefoed-Johnsen and Ussing hypothesis does not seem possible. With little dispute that this enzyme is, nonetheless, the probable site for conversion of metabolic energy to transport-related work, we summarized as well the more macroscopic structural characteristics of epithelia which serve to typify each of the four classes in terms of the direction and tonicity of transported fluid. The apparently systematic differences in cell shape and cell-cell junctions that are summarized here may well be an important consideration for the development of a useful holistic theory with which to explain the transepithelial transport of salt and water.  相似文献   

12.
Calmodulin-dependent Ca2+-pump ATPase of human smooth muscle sarcolemma   总被引:1,自引:0,他引:1  
L M Popescu  P Ignat 《Cell calcium》1983,4(4):219-235
An enzymatically active Ca2+-stimulated ATPase has been isolated from the sarcolemmal sheets of human smooth muscle (myometrium). Ca2+-ATPase activity was quantitated in an assay medium which simulated the characteristic free ionic concentrations of the cytosol. New computer programs for calculating the composition of solutions containing metals (Ca, Mg, Na, K) and ligands (EGTA, ATP), based on the updated stability constants, were used. In detergent-soluble form the enzyme has a high Ca2+-affinity expressed by an apparent Km (Ca2+) of 0.25 +/- 0.04 microM. The maximum specific activity (about 20 nmol of Pi/mg protein/min) was found in the micromolar domain of free-Ca2+ concentrations, the same levels required for normal maximal contractions in smooth muscle. The variation of free-Ca2+ concentration in the assay medium over 4 orders of magnitude (pCa 9 to pCa 5) resulted in a sigmoidal dependence of enzymatic activity, with a Hill coefficient of 1.4, which suggested the regulation of Ca2+-ATPase by allosteric effectors. The presence and the activator role of endogenous calmodulin in smooth muscle sarcolemma was proved by calmodulin-depletion experiments and by using suitable anticalmodulinic concentrations of trifluoperazine. The addition of exogenous calmodulin restored the enzyme activity. Apparently, the concentration of calmodulin in isolated smooth muscle sarcolemma is about 0.1% of sarcolemmal proteins, as deduced from the comparison of calmodulin-depletion and calmodulin-readdition experiments. Calmodulin increased significantly the enzyme Ca2+-affinity and Vmax (by a factor of about 10). At variance with the sarcoplasmic reticulum Ca2+-ATPase, the sarcolemmal Ca2+-ATPase is extremely sensitive to orthovanadate, half-maximal inhibition being observed at 0.8 microM vanadate. In conclusion, the Ca2+-ATPase isolated from smooth muscle sarcolemma appears very similar to the well-known Ca2+-pump ATPases of erythrocyte membrane, heart sarcolemma or axolemma. We suggest that this high-affinity Ca2+-ATPase represents the calmodulin-regulated Ca2+-extrusion pump of the smooth muscle sarcolemma.  相似文献   

13.
Intramolecular excimerization of 1,3-di-1-pyrenylpropane [Py(3)Py] was used to assess the fluidity of sarcoplasmic reticulum membranes (SR); on the basis of the spectral data, the probe incorporates completely inside the membrane probably somewhere close to the polar head groups of phospholipid molecules, however not in the very hydrophobic core. The excimerization rate is very sensitive to lipid phase transitions, as revealed by thermal profiles of dimyristoyl-phosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers. Cholesterol abolishes pretransitions and broadens the thermal profiles of the main transitions which vanish completely at 50 mol % sterol. Excimer formation in liposomes of SR total lipid extracts does not show any sharp transitions, as in the case of DMPC and DPPC. However, the plots display discontinuities at about 20 degrees C which are broadened by cholesterol and not observed at 50 mol % sterol. Also cholesterol has been incorporated in native SR membranes by an exchange technique allowing progressive enrichment without changing the phospholipid/protein molar ratio. As in liposomes, discontinuities of excimer formation at 20 degrees C are broadened by cholesterol enrichment. The full activity of uncoupled Ca2+-ATPase is only affected by cholesterol above a molar ratio to phospholipid of 0.4. However, a significant decrease in activity (about 20%) is only noticed at a ratio of 0.6 (the highest technically achieved); at this ratio, about 28 lipid molecules per Ca2+-ATPase are expected to be relatively free from cholesterol interaction. The vesicle structure is still intact at this high ratio, as judged from the absence of basal activity (not Ca2+ stimulated).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In order to identify defects in Na+-Ca2+ exchange and Ca2+-pump systems in cardiomyopathic hearts, the activities of sarcolemmal Na+-dependent Ca2+ uptake, Na+-induced Ca2+ release, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase were examined by employing cardiomyopathic hamsters (UM-X7.1) and catecholamine-induced cardiomyopathy produced by injecting isoproterenol into rats. The rates of Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase activities of sarcolemmal vesicles from genetically-linked cardiomyopathic as well as catecholamine-induced cardiomyopathic hearts were decreased without any changes in Na+-induced Ca2+-release. Similar results were obtained in Ca2+-paradox when isolated rat hearts were perfused for 5 min with a medium containing 1.25 mM Ca2+ following a 5 min perfusion with Ca2+-free medium. Although a 2 min reperfusion of the Ca2+-free perfused hearts depressed sarcolemmal Ca2+-pump activities without any changes in Na+-induced Ca2+-release, Na+-dependent Ca2+ uptake was increased. These results indicate that alterations in the sarcolemmal Ca2+-efflux mechanisms may play an important role in cardiomyopathies associated with the development of intracellular Ca2+ overload.  相似文献   

15.
ATP-enriched human red cells display high rates of Ca2+-dependent ATP hydrolysis (16 mmol·litre cells?1·h?1) with a high Ca2+ affinity (K0.5~0.2 μM). The finding suggests a mechanism for regulation of cell Ca2+ levels, involving highly-cooperative stimulation of active Ca2+ extrusion following binding of calmodulin to the (Ca2+ + Mg2+)-ATPase.  相似文献   

16.
Trypsin activation of the red cell Ca2+-pump ATPase is calcium-sensitive   总被引:2,自引:0,他引:2  
Stimulation of the calmodulin-independent activity of the red cell Ca2+-pump ATPase by trypsin treatment (of calmodulin free red cell membranes) is sensitive to Ca2+ in a concentration range near the KCa of the transport site. The Ca2+ requirement for this effect is absolute, whereas the calmodulin sensitivity of the ATPase can be abolished by sufficient trypsin attack in the absence of Ca2+, although Ca2+ accelerates inactivation. This indicates that the two effects of trypsin are due to at least two distinct cleavage sites in the pump protein.  相似文献   

17.
Proteoliposomes reconstituted from purified Na+ pumps show neither Ca2+ activation nor bumetanide inhibition of Rb+ uptake, suggesting that the Na+ pump does not mediate these passive fluxes.  相似文献   

18.
Hormonal control of the Na+,K+-pump modulates membrane potential in mammalian cells, which in turn drives ion coupled transport processes and maintains cell volume and osmotic balance. Na+,K+-pump regulation is particularly important in the musculoskeletal, cardiovascular and renal systems. Decreased Na+,K+-pump activity can result in a rise in intracellular Na+ concentrations which in turn increase Na+/Ca2+ exchange, thereby raising intracellular Ca2+ levels. In cardiac and skeletal muscle, this could interfere with normal contractile activity. Similarly, in vascular smooth muscle the result would be resistance to vasodilation. Inhibition of the Na+,K+-pump can also reduce the driving force for renal tubular Na+ reabsorption, elevating Na+ excretion. By virtue of decreasing the membrane potential, thus allowing more efficient depolarization of nerve endings and by increasing intracellular Ca2+, inhibition of the Na+,K+-pump can increase nervous tone. The ability of insulin to stimulate the Na+,K+-pump in various cells and tissues, and the physiological significance thereof, have been well documented. Much less is known about the effect of leptin on the Na+,K+-pump. We have shown that leptin inhibits Na+,K+-pump function in 3T3-L1 fibroblasts. Defects in insulin and leptin action are associated with diabetes and obesity, respectively, both of which are commonly associated with cardiovascular complications. In this review we discuss the mechanisms of Na+,K+-pump regulation by insulin and leptin and highlight how, when they fail, they may contribute to the pathophysiology of hypertension associated with diabetes and obesity.  相似文献   

19.
Ouabain-sensitive 86Rb+ uptake by isolated rat hepatocytes was studied to elucidate how Ca2+-mobilizing hormones stimulate the Na+-pump. Stimulation of this uptake was observed with concentrations of vasopressin ([8-arginine]vasopressin, AVP), angiotensin II, and norepinephrine which elicited Ca2+ mobilization and phosphorylase activation. These results suggested that changes in cytosolic Ca2+, mediated by inositol trisphosphate, might trigger sodium pump stimulation by AVP. However, in hepatocytes incubated in Ca2+-free Krebs-Henseleit buffer, Na+-pump activity was not altered over 15 min by either 1.5 mM EGTA or 1.5 mM Ca2+. Furthermore, incubation of cells in 5 mM EGTA for 15-30 min drastically impaired the ability of AVP to increase cytosolic Ca2+, but only modestly attenuated AVP-stimulated Na+-pump activity. Two tumor promoters, phorbol myristate acetate (PMA) and mezerein, stimulated Na+/K+-ATPase-mediated transport activity. Similarly, addition of synthetic diacylglycerols or of exogenous phospholipase C from Clostridium perfringens to increase endogenous diacylglycerol levels also resulted in a stimulation of the Na+-pump in the absence of changes in cytosolic or total cellular Ca2+ levels. Stimulation of the Na+-pump by the combination of maximal concentrations of PMA and AVP did not produce an additive response, and both agents displayed a transient time course, suggesting that the two agents share a common mechanism. Stimulation of the Na+-pump by AVP and PMA was not blocked by amiloride analogs which inhibit Na+/H+ exchange, but these compounds blocked the action of insulin. These data suggest that the elevated Na+/K+-ATPase-mediated transport activity observed in hepatocytes following exposure to Ca2+-mobilizing hormones is a consequence of stimulated diacylglycerol formation and may involve protein kinase C.  相似文献   

20.
Incubation of purified cardiac sarcolemmal vesicles (SL) in the presence of S-adenosyl-L-methionine, a methyl donor for the enzymatic N-methylation of phosphatidylethanolamine (PE), increased the Ca2+-stimulated ATPase and ATP-dependent Ca2+ accumulation activities. Quantitative analysis of the methylated phospholipids revealed that maximal increase of Ca2+-pump activities was associated with predominant synthesis and intramembranal accumulation of phosphatidyl-N,N-dimethylethanolamine. The stimulation of SL Ca2+-pump activities was prevented by inhibitors of PE N-methylation such as S-adenosyl-L-homocysteine and methyl acetimidate hydrochloride. The results suggest a possible role of PE N-methylation in the regulation of Ca2+-transport across the heart SL membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号