首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang J  Shi X  Li Y  Kim BJ  Jia J  Huang Z  Yang T  Fu X  Jung SY  Wang Y  Zhang P  Kim ST  Pan X  Qin J 《Molecular cell》2008,31(1):143-151
Sister chromatid cohesion is normally established in S phase in a process that depends on the cohesion establishment factor Eco1, a conserved acetyltransferase. However, due to the lack of known in vivo substrates, how Eco1 regulates cohesion is not understood. Here we report that yeast Eco1 and its human ortholog, ESCO1, both acetylate Smc3, a component of the cohesin complex that physically holds the sister chromatid together, at two conserved lysine residues. Mutating these lysine residues to a nonacetylatable form leads to increased loss of sister chromatid cohesion and genome instability in both yeast and human. In addition, we clarified that the acetyltransferase activity of Eco1 is essential for its function. Our study thus identified a molecular target for the acetyltransferase Eco1 and revealed that Smc3 acetylation is a conserved mechanism in regulating sister chromatid cohesion.  相似文献   

2.
3.
Cohesion between sister chromatids is established during S phase and maintained through G2 phase until it is resolved in anaphase (for review, see [1-3]). In Saccharomyces cerevisiae, a complex consisting of Scc1, Smc1, Smc3, and Scc3 proteins, called "cohesin," mediates the connection between sister chromatids. The evolutionary conserved yeast protein Eco1 is required for establishment of sister chromatid cohesion during S phase but not for its further maintenance during G2 or M phases or for loading the cohesin complex onto DNA. We address the molecular functions of Eco1 with sensitive sequence analytic techniques, including hidden Markov model domain fragment searches. We found a two-domain architecture with an N-terminal C2H2 Zn finger-like domain and an approximately 150 residue C-terminal domain with an apparent acetyl coenzyme A binding motif (http://mendel.imp.univie.ac.at/SEQUENCES/ECO1/). Biochemical tests confirm that Eco1 has the acetyltransferase activity in vitro. In vitro Eco1 acetylates itself and components of the cohesin complex but not histones. Thus, the establishment of cohesion between sister chromatids appears to be regulated, directly or indirectly, by a specific acetyltransferase.  相似文献   

4.
Cohesin is a protein complex that ties sister DNA molecules from the time of DNA replication until the metaphase to anaphase transition. Current models propose that the association of the Smc1, Smc3, and Scc1/Mcd1 subunits creates a ring-shaped structure that entraps the two sister DNAs [1]. Cohesin is essential for correct chromosome segregation and recombinational repair. Its activity is therefore controlled by several posttranslational modifications, including acetylation, phosphorylation, sumoylation, and site-specific proteolysis. Here we show that cohesin sumoylation occurs at the time of cohesion establishment, after cohesin loading and ATP binding, and independently from Eco1-mediated cohesin acetylation. In order to test the functional relevance of cohesin sumoylation, we have developed a novel approach in budding yeast to deplete SUMO from all subunits in the cohesin complex, based on fusion of the Scc1 subunit to a SUMO peptidase Ulp domain (UD). Downregulation of cohesin sumoylation is lethal, and the Scc1-UD chimeras have a failure in sister chromatid cohesion. Strikingly, the unsumoylated cohesin rings are acetylated. Our findings indicate that SUMO is a novel molecular determinant for the establishment of sister chromatid cohesion, and we propose that SUMO is required for the entrapment of sister chromatids during the acetylation-mediated closure of the cohesin ring.  相似文献   

5.
Cohesin is a protein complex that forms a ring around sister chromatids thus holding them together. The ring is composed of three proteins: Smc1, Smc3 and Scc1. The roles of three additional proteins that associate with the ring, Scc3, Pds5 and Wpl1, are not well understood. It has been proposed that these three factors form a complex that stabilizes the ring and prevents it from opening. This activity promotes sister chromatid cohesion but at the same time poses an obstacle for the initial entrapment of sister DNAs. This hindrance to cohesion establishment is overcome during DNA replication via acetylation of the Smc3 subunit by the Eco1 acetyltransferase. However, the full mechanistic consequences of Smc3 acetylation remain unknown. In the current work, we test the requirement of Scc3 and Pds5 for the stable association of cohesin with DNA. We investigated the consequences of Scc3 and Pds5 depletion in vivo using degron tagging in budding yeast. The previously described DHFR-based N-terminal degron as well as a novel Eco1-derived C-terminal degron were employed in our study. Scc3 and Pds5 associate with cohesin complexes independently of each other and require the Scc1 "core" subunit for their association with chromosomes. Contrary to previous data for Scc1 downregulation, depletion of either Scc3 or Pds5 had a strong effect on sister chromatid cohesion but not on cohesin binding to DNA. Quantity, stability and genome-wide distribution of cohesin complexes remained mostly unchanged after the depletion of Scc3 and Pds5. Our findings are inconsistent with a previously proposed model that Scc3 and Pds5 are cohesin maintenance factors required for cohesin ring stability or for maintaining its association with DNA. We propose that Scc3 and Pds5 specifically function during cohesion establishment in S phase.  相似文献   

6.
Acetylation of the Smc3 subunit of cohesin is essential to establish functional cohesion between sister chromatids. Smc3 acetylation is catalyzed by members of the Eco family of acetyltransferases, although the mechanism by which acetylation is regulated and how it promotes cohesion are largely unknown. In vertebrates, the cohesin complex binds to chromatin during mitotic exit and is converted to a functional form during or shortly after DNA replication. The conserved proliferating cell nuclear antigen-interacting protein box motif in yeast Eco1 is required for function, and cohesin is acetylated during the S phase. This has led to the notion that acetylation of cohesin is stimulated by interaction of Eco1 with the replication machinery. Here we show that in vertebrates Smc3 acetylation occurs independently of DNA replication. Smc3 is readily acetylated before replication is initiated and after DNA replication is complete. However, we also show that functional acetylation occurs only in association with the replication machinery: disruption of the interaction between XEco2 and proliferating cell nuclear antigen prevents cohesion establishment while having little impact on the overall levels of Smc3 acetylation. These results demonstrate that Smc3 acetylation can occur throughout interphase but that only acetylation in association with the replication fork promotes sister chromatid cohesion. These data reveal how the generation of cohesion is limited to the appropriate time and place during the cell cycle and provide insight into the mechanism by which acetylation ensures cohesion.  相似文献   

7.
Cohesion establishment is central to sister chromatid tethering reactions and requires Ctf7/Eco1-dependent acetylation of the cohesin subunit Smc3. Ctf7/Eco1 is essential during S phase, and a number of replication proteins (RFC complexes, PCNA and the DNA helicase Chl1) all play individual roles in sister chromatid cohesion. While the mechanism of cohesion establishment is largely unknown, a popular model is that Ctf7/Eco1 acetylates cohesins encountered by and located in front of the fork. In turn, acetylation is posited both to allow fork passage past cohesin barriers and convert cohesins to a state competent to capture subsequent production of sister chromatids. Here, we report evidence that challenges this pre-replicative cohesion establishment model. Our genetic and biochemical studies link Ctf7/Eco1 to the Okazaki fragment flap endonuclease, Fen1. We further report genetic and biochemical interactions between Fen1 and the cohesion-associated DNA helicase, Chl1. These results raise a new model wherein cohesin deposition and establishment occur in concert with lagging strand-processing events and in the presence of both sister chromatids.  相似文献   

8.
Cohesion establishment is central to sister chromatid tethering reactions and requires Ctf7/Eco1-dependent acetylation of the cohesin subunit Smc3. Ctf7/Eco1 is essential during S phase, and a number of replication proteins (RFC complexes, PCNA and the DNA helicase Chl1) all play individual roles in sister chromatid cohesion. While the mechanism of cohesion establishment is largely unknown, a popular model is that Ctf7/Eco1 acetylates cohesins encountered by and located in front of the fork. In turn, acetylation is posited both to allow fork passage past cohesin barriers and convert cohesins to a state competent to capture subsequent production of sister chromatids. Here, we report evidence that challenges this pre-replicative cohesion establishment model. Our genetic and biochemical studies link Ctf7/Eco1 to the Okazaki fragment flap endonuclease, Fen1. We further report genetic and biochemical interactions between Fen1 and the cohesion-associated DNA helicase, Chl1. These results raise a new model wherein cohesin deposition and establishment occur in concert with lagging strand-processing events and in the presence of both sister chromatids.  相似文献   

9.
KL Chan  MB Roig  B Hu  F Beckouët  J Metson  K Nasmyth 《Cell》2012,150(5):961-974
Sister chromatid cohesion is mediated by entrapment of sister DNAs by a tripartite ring composed of cohesin's Smc1, Smc3, and α-kleisin subunits. Cohesion requires acetylation of Smc3 by Eco1, whose role is to counteract an inhibitory (antiestablishment) activity associated with cohesin's Wapl subunit. We show that mutations abrogating antiestablishment activity also reduce turnover of cohesin on pericentric chromatin. Our results reveal?a "releasing" activity inherent to cohesin complexes transiently associated with Wapl that catalyzes their dissociation from chromosomes. Fusion of Smc3's nucleotide binding domain to α-kleisin's N-terminal domain also reduces cohesin turnover within pericentric chromatin and permits establishment of Wapl-resistant cohesion in the absence of Eco1. We suggest that releasing activity opens the Smc3/α-kleisin interface, creating a DNA exit gate distinct from its proposed entry gate at the Smc1/3 interface. According to this notion, the function of Smc3 acetylation is to block its dissociation from α-kleisin. The functional implications of regulated ring opening are discussed.  相似文献   

10.
Cohesin complex mediates cohesion between sister chromatids, which promotes high-fidelity chromosome segregation. Eco1p acetylates the cohesin subunit Smc3p during S phase to establish cohesion. The current model posits that this Eco1p-mediated acetylation promotes establishment by abrogating the ability of Wpl1p to destabilize cohesin binding to chromosomes. Here we present data from budding yeast that is incompatible with this Wpl1p-centric model. Two independent in vivo assays show that a wpl1∆ fails to suppress cohesion defects of eco1∆ cells. Moreover, a wpl1∆ also fails to suppress cohesion defects engendered by blocking just the essential Eco1p acetylation sites on Smc3p (K112, K113). Thus removing WPL1 inhibition is insufficient for generating cohesion without ECO1 activity. To elucidate how ECO1 promotes cohesion, we conducted a genetic screen and identified a cohesion activator mutation in the SMC3 head domain (D1189H). Smc3-D1189H partially restores cohesion in eco1∆ wpl1∆ or eco1 mutant cells but robustly restores cohesion in cells blocked for Smc3p K112 K113 acetylation. These data support two important conclusions. First, acetylation of the K112 K113 region by Eco1p promotes cohesion establishment by altering Smc3p head function independent of its ability to antagonize Wpl1p. Second, Eco1p targets other than Smc3p K112 K113 are necessary for efficient establishment.  相似文献   

11.
Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for their alignment on the spindle apparatus and segregation in mitosis. Budding yeast cohesin first associates with chromosomes in G1. Then, during DNA replication in S-phase, the replication fork-associated acetyltransferase Eco1 acetylates the cohesin subunit Smc3 to make cohesin’s DNA binding resistant to destabilization by the Wapl protein. Whether stabilization of cohesin molecules that happen to link sister chromatids is sufficient to build sister chromatid cohesion, or whether additional reactions are required to establish these links, is not known. In addition to Eco1, several other factors contribute to cohesion establishment, including Ctf4, Ctf18, Tof1, Csm3, Chl1 and Mrc1, but little is known about their roles. Here, we show that each of these factors facilitates cohesin acetylation. Moreover, the absence of Ctf4 and Chl1, but not of the other factors, causes a synthetic growth defect in cells lacking Eco1. Distinct from acetylation defects, sister chromatid cohesion in ctf4Δ and chl1Δ cells is not improved by removing Wapl. Unlike previously thought, we do not find evidence for a role of Ctf4 and Chl1 in Okazaki fragment processing, or of Okazaki fragment processing in sister chromatid cohesion. Thus, Ctf4 and Chl1 delineate an additional acetylation-independent pathway that might hold important clues as to the mechanism of sister chromatid cohesion establishment.  相似文献   

12.
The replication-fork-associated protein Eco1 is required for the establishment of sister chromatid cohesion, which plays an essential role in faithful chromosome segregation. Three recent studies in yeast and humans reveal that the acetyltransferase activity of Eco1 targets the cohesin subunit Smc3 to facilitate the establishment of cohesion.  相似文献   

13.
Marie E. Maradeo 《FEBS letters》2010,584(18):4037-4040
Ctf7/Eco1-dependent acetylation of Smc3 is essential for sister chromatid cohesion. Here, we use epitope tag-induced lethality in cells diminished for Ctf7/Eco1 activity to map cohesin architecture in vivo. Tagging either Smc1 or Mcd1/Scc1, but not Scc3/Irr1, appears to abolish access to Smc3 in ctf7/eco1 mutant cells, suggesting that Smc1 and Smc3 head domains are in direct contact with each other and also with Mcd1/Scc1. Thus, cohesin complexes may be much more compact than commonly portrayed. We further demonstrate that mutation in ELG1 or RFC5 anti-establishment genes suppress tag-induced lethality, consistent with the notion that the replication fork regulates Ctf7/Eco1.  相似文献   

14.
Lyons NA  Morgan DO 《Molecular cell》2011,42(3):378-389
Accurate genome segregation depends on cohesion mechanisms that link duplicated sister chromatids, thereby allowing their tension-dependent biorientation in metaphase. In Saccharomyces cerevisiae, cohesion is established during DNA replication when Eco1 acetylates the cohesin subunit Smc3. Cohesion establishment is restricted to S phase of the cell cycle, but the molecular basis of this regulation is unknown. Here, we show that Eco1 is negatively regulated by the protein kinase Cdk1. Phosphorylation of Eco1 after S phase targets it to SCF(Cdc4) for ubiquitination and subsequent degradation. A nonphosphorylatable mutant of Eco1 establishes cohesion after DNA replication, suggesting that Cdk1-dependent phosphorylation of Eco1 is a key factor limiting establishment to S phase. We also show that deregulation of Eco1 results in chromosome separation defects in anaphase. We conclude that this regulatory mechanism helps optimize the level of sister chromatid cohesion, ensuring a robust and efficient anaphase.  相似文献   

15.
Tanaka K  Hao Z  Kai M  Okayama H 《The EMBO journal》2001,20(20):5779-5790
During S phase, chromatid cohesion is established only between nascent sisters and with faithful pairing along their entire region, but how this is ensured is unknown. Here we report that sister chromatid cohesion is formed and maintained by a unique mechanism. In fission yeast, Eso1p, functioning in close coupling to DNA replication, establishes sister chromatid cohesion whereas the newly identified Cohesin-associated protein Pds5p hinders the establishment of cohesion until counteracted by Eso1p, yet stabilizes cohesion once it is established. Eso1p interacts physically with Pds5p via its Ctf7p/Eco1p-homologous domain.  相似文献   

16.
Proper segregation of chromosomes during mitosis requires that the products of chromosome replication are paired together-termed sister chromatid cohesion. In budding yeast, Ctf7p/Eco1p is an essential protein that establishes cohesion between sister chromatids during S phase. In fission yeast, Eso1p also functions in cohesion establishment, but is comprised of a Ctf7p/Eco1p domain fused to a Rad30p domain (a DNA polymerase) both of which are independently expressed in budding yeast. In this report, we identify and characterize the first candidate human ortholog of Ctf7p/Eco1p, which we term hEFO1p (human Establishment Factor Ortholog). As in fission yeast Eso1p, the hEFO1p open reading frame extends well upstream of the C-terminal Ctf7p/Eco1p domain. However, this N-terminal extension in hEFO1p is unlike Rad30p, but instead exhibits significant homology to linker histone proteins. Thus, hEFO1p is a unique fusion of linker histone and cohesion establishment domains. hEFO1p is widely expressed among the tissues tested. Consistent with a role in chromosome segregation, hEFO1p localizes exclusively to the nucleus when expressed in HeLa tissue culture cells. Moreover, biochemical analyses reveal that hEFO1p exhibits acetyltransferase activity. These findings document the first characterization of a novel human acetyltransferase, hEFO1p, that is comprised of both linker histone and Ctf7p/Eco1p domains.  相似文献   

17.
Correct segregation of duplicated chromosomes to daughter cells during mitosis requires the action of the cohesin complex. This tripartite ring‐shaped molecule is involved in holding replicated sister chromatids together from S phase until anaphase onset. Establishment of stable cohesion involves acetylation of the Smc3 component of cohesin during replication by the Eco1 acetyltransferase. This has been proposed to antagonise the activity of another member of the cohesin complex, Wpl1. Here, we describe the X‐ray structure of the conserved Wapl domain, and demonstrate that it binds the ATPase head of the Smc3 protein. We present data that suggest that Wpl1 may be involved in regulating the ATPase activity of cohesin, and that this may be subject to the acetylation state of Smc3. In addition, we present a structure of the Wapl domain bound to a functionally relevant segment of the Smc3 ATPase.  相似文献   

18.
Two sister chromatids must be held together by a cohesion process from their synthesis during S phase to segregation in anaphase. Despite its pivotal role in accurate chromosome segregation, how cohesion is established remains elusive. Here, we demonstrate that yeast Rtt101‐Mms1, Cul4 family E3 ubiquitin ligases are stronger dosage suppressors of loss‐of‐function eco1 mutants than PCNA. The essential cohesion reaction, Eco1‐catalyzed Smc3 acetylation is reduced in the absence of Rtt101‐Mms1. One of the adaptor subunits, Mms22, associates directly with Eco1. Point mutations (L61D/G63D) in Eco1 that abolish the interaction with Mms22 impair Smc3 acetylation. Importantly, an eco1LGpol30A251V double mutant displays additive Smc3ac reduction. Moreover, Smc3 acetylation and cohesion defects also occur in the mutants of other replication‐coupled nucleosome assembly (RCNA) factors upstream or downstream of Rtt101‐Mms1, indicating unanticipated cross talk between histone modifications and cohesin acetylation. These data suggest that fork‐associated Cul4‐Ddb1 E3s, together with PCNA, coordinate chromatin reassembly and cohesion establishment on the newly replicated sister chromatids, which are crucial for maintaining genome and chromosome stability.  相似文献   

19.
Sister chromatid cohesion is essential for cell viability. We have isolated a novel temperature-sensitive lethal mutant named eso1-H17 that displays spindle assembly checkpoint-dependent mitotic delay and abnormal chromosome segregation. At the permissive temperature, the eso1-H17 mutant shows mild sensitivity to UV irradiation and DNA-damaging chemicals. At the nonpermissive temperature, the mutant is arrested in M phase with a viability loss due to a failure to establish sister chromatid cohesion during S phase. The lethal M-phase arrest phenotype, however, is suppressed by inactivation of a spindle checkpoint. The eso1(+) gene is not essential for the onset and progression of DNA replication but has remarkable genetic interactions with those genes regulating the G(1)-S transition and DNA replication. The N-terminal two-thirds of Eso1p is highly homologous to DNA polymerase eta of budding yeast and humans, and the C-terminal one-third is homologous to budding yeast Eco1p (also called Ctf7p), which is required for the establishment of sister chromatid cohesion. Deletion analysis and determination of the mutation site reveal that the function of the Eco1p/Ctf7p-homologous domain is necessary and sufficient for sister chromatid cohesion. On the other hand, deletion of the DNA polymerase eta domain in Eso1p increases sensitivity to UV irradiation. These results indicate that Eso1p plays a dual role during DNA replication. The C-terminal region acts to establish sister chromatid cohesion, and the N-terminal region presumably catalyzes translesion DNA synthesis when template DNA contains lesions that block regular DNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号