首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
More than 400 pentatricopeptide repeat (PPR) genes have been found in higher plants, but most of them have not been functionally analyzed and their origins are still obscure. In this study, we performed phylogenetic genomewide comparisons of the PPR gene family in indica and japonica rice to explore the expansion mechanisms of these genes in higher plants. The functions of PPR genes in plant CMS/Rf systems are also discussed. The results indicate that (1) unequal crossing over participated in the expansion of the newly evolved PPR genes in indica and japonica rice genomes, (2) CMS/Rf systems are different in monocots and dicots, (3) the BT-type CMS/Rf system exists in both indica and japonica rice, and (4) both the PPR gene family and the BT-type CMS/Rf system may have existed before the divergence of indica and japonica rice.  相似文献   

3.
4.
5.
A variety of organisms have independently evolved proteins exhibiting antifreeze activity that allows survival at subfreezing temperatures. The antifreeze proteins (AFPs) bind ice nuclei and depress the freezing point by a noncolligative absorption–inhibition mechanism. Many organisms have a heterogeneous suite of AFPs with variation in primary sequence between paralogous loci. Here, we demonstrate that the diversification of the AFP paralogues is promoted by positive Darwinian selection in two independently evolved AFPs from fish and beetle. First, we demonstrate an elevated rate of nonsynonymous substitutions compared to synonymous substitutions in the mature protein coding region. Second, we perform phylogeny-based tests of selection to demonstrate a subset of codons is subjected to positive selection. When mapped onto the three-dimensional structure of the fish antifreeze type III antifreeze structure, these codons correspond to amino acid positions that surround but do not interrupt the putative ice-binding surface. The selective agent may be related to efficient binding to diverse ice surfaces or some other aspect of AFP function. Received: 27 February 2001 / Accepted: 12 September 2001  相似文献   

6.
Mitochondrial translation involves a complex interplay of ancient bacteria-like features and host-derived functionalities. Although the basic components of the mitochondrial translation apparatus have been recognized, very few protein factors aiding in recruiting ribosomes on mitochondria-encoded messenger RNA (mRNAs) have been identified in higher plants. In this study, we describe the identification of the Arabidopsis (Arabidopsis thaliana) MITOCHONDRIAL TRANSLATION FACTOR1 (MTL1) protein, a new member of the Pentatricopeptide Repeat family, and show that it is essential for the translation of the mitochondrial NADH dehydrogenase subunit7 (nad7) mRNA. We demonstrate that mtl1 mutant plants fail to accumulate the Nad7 protein, even though the nad7 mature mRNA is produced and bears the same 5′ and 3′ extremities as in wild-type plants. We next observed that polysome association of nad7 mature mRNA is specifically disrupted in mtl1 mutants, indicating that the absence of Nad7 results from a lack of translation of nad7 mRNA. These findings illustrate that mitochondrial translation requires the intervention of gene-specific nucleus-encoded PPR trans-factors and that their action does not necessarily involve the 5′ processing of their target mRNA, as observed previously. Interestingly, a partial decrease in nad7 intron 2 splicing was also detected in mtl1 mutants, suggesting that MTL1 is also involved in group II intron splicing. However, this second function appears to be less essential for nad7 expression than its role in translation. MTL1 will be instrumental to understand the multifunctionality of PPR proteins and the mechanisms governing mRNA translation and intron splicing in plant mitochondria.Translation is the fundamental process decoding the genetic message present on mRNAs into proteins. In plant cells, mRNA translation occurs in the cytoplasm but also in two organelles, mitochondria and plastids. Because of their prokaryotic origin, the translation machineries operating in these two organelles share many characteristics with the bacterial translation apparatus (Bonen, 2004; Barkan, 2011). However, most of these bacteria-like features have been modified throughout evolution, and current organellar translation systems cooperate with numerous nucleus-encoded eukaryotic trans-factors. The divergence from bacteria is particularly obvious in plant mitochondria, notably because mitochondrial mRNAs lack the typical Shine and Dalgarno (SD) motif in their 5′ leaders and alternative start codons other than AUG are often used to initiate translation (Bonen, 2004). Proteomic and bioinformatic analyses allowed the identification of most proteins and RNA factors forming the core of the plant mitochondrial translation machinery, including translation initiation and elongation factors as well as ribosomal proteins (Bonen, 2004; Bonen and Calixte, 2006). However, the dynamics of this machinery remains largely obscure. In particular, nothing is known about the recruitment of mitochondrial ribosomes on 5′ untranslated regions in the absence of the SD motif and about the recognition of the correct translation initiation codon by the small ribosomal subunit. The high degree of sequence divergence among 5′ leaders of mitochondrial genes suggests a ribosome recruitment mechanism involving gene-specific cis-sequences and trans-factors (Hazle and Bonen, 2007; Choi et al., 2012). Up to now, only two proteins belonging to the Pentatricopeptide Repeat (PPR) family have been found to promote mitochondrial translation in higher plants (Uyttewaal et al., 2008b; Manavski et al., 2012). How they facilitate translation is still unclear, as for the few characterized PPR proteins shown to participate in plastid translation (Fisk et al., 1999; Schmitz-Linneweber et al., 2005; Cai et al., 2011; Zoschke et al., 2012, 2013). The plastid PENTATRICOPEPTIDE REPEAT PROTEIN10 (PPR10) protein of maize (Zea mays) is the only one for which the function has been elucidated at the molecular level. It was shown that, upon binding, PPR10 impedes the formation of a stem-loop structure in the 5′ leader of the ATP synthase subunit c (atpH) mRNA, permitting the recruitment of ribosomes through the liberation of an SD motif (Prikryl et al., 2011).PPR proteins represent a large family of RNA-binding proteins that has massively expanded in terrestrial plants (Barkan and Small, 2014). Most eukaryotes encode a handful of these proteins, whereas plant nuclear genomes express over 400 PPR proteins that are almost exclusively predicted to target mitochondria and/or plastids (Lurin et al., 2004; O’Toole et al., 2008). This family of proteins is characterized by the succession of tandem degenerate motifs of approximately 35 amino acids (Small and Peeters, 2000; Lurin et al., 2004). Based on the length of these repeats, the PPR family has been divided into two groups of roughly equal size in higher plants. P-type PPR proteins contain only successions of canonical 35-amino acid repeats (P), whereas PLS PPR proteins are composed of sequential repeats of P, short (S), and long (L) PPR motifs. P-type PPR proteins were shown to participate in various aspects of organellar RNA processing, whereas PLS PPR proteins have been almost exclusively associated with C-to-U RNA editing (for review, see Barkan and Small, 2014; Hammani and Giegé, 2014). Recent crystal structures showed that PPR motifs adopt an antiparallel helix-turn-helix fold whose repetition forms a solenoid-like structure (Ringel et al., 2011; Howard et al., 2012; Ban et al., 2013; Yin et al., 2013; Coquille et al., 2014; Gully et al., 2015). PPR tracks organize highly specific interaction domains that were shown to associate with single-stranded RNAs (Schmitz-Linneweber et al., 2005; Beick et al., 2008; Uyttewaal et al., 2008a; Williams-Carrier et al., 2008; Pfalz et al., 2009; Cai et al., 2011; Hammani et al., 2011; Prikryl et al., 2011; Khrouchtchova et al., 2012; Manavski et al., 2012; Zhelyazkova et al., 2012; Ke et al., 2013; Yin et al., 2013). The mechanism of sequence-specific RNA recognition by PPR proteins was recently uncovered, and combinations involving amino acid 6 of one motif and amino acid 1 of the subsequent motif correlate strongly with the identity of the RNA base to be bound (Barkan et al., 2012; Takenaka et al., 2013; Yagi et al., 2013).Besides those involved in RNA editing, few mitochondria-targeted PPR proteins have been characterized to date. Thus, our knowledge of the mechanisms governing the production and the expression of mitochondrial RNAs in higher plants is very limited. In this analysis, we describe the function of a novel mitochondria-targeted PPR protein of Arabidopsis (Arabidopsis thaliana) called MITOCHONDRIAL TRANSLATION FACTOR1 (MTL1). Genetic and biochemical analyses indicate that MTL1 is essential for the translation of the mitochondrial NADH dehydrogenase subunit7 (nad7) mRNA. Effectively, the Nad7 protein does not accumulate to detectable levels in mtl1 mutants, and this absence correlates with a lack of association of nad7 mature mRNA with mitochondrial polysomes. Interestingly, a partial but significant decrease in nad7 intron 2 splicing was also detected in mtl1 mutants, suggesting that the MTL1 protein is also involved in group II intron splicing. Since the decrease in splicing was only partial, this second function of MTL1 appears less essential for nad7 expression than its role in translation.  相似文献   

7.
8.
9.
Ankyrin repeat containing proteins are one of the most abundant solenoid folds. Usually implicated in specific protein-protein interactions, these proteins are readily amenable for design, with promising biotechnological and biomedical applications. Studying repeat protein families presents technical challenges due to the high sequence divergence among the repeating units. We developed and applied a systematic method to consistently identify and annotate the structural repetitions over the members of the complete Ankyrin Repeat Protein Family, with increased sensitivity over previous studies. We statistically characterized the number of repeats, the folding of the repeat-arrays, their structural variations, insertions and deletions. An energetic analysis of the local frustration patterns reveal the basic features underlying fold stability and its relation to the functional binding regions. We found a strong linear correlation between the conservation of the energetic features in the repeat arrays and their sequence variations, and discuss new insights into the organization and function of these ubiquitous proteins.  相似文献   

10.
Kun  Wang  Feng  Gao  Renshan  Zhu  Shaoqing  Li  Yingguo  Zhu 《Plant Molecular Biology Reporter》2011,29(3):739-744
Pentatricopeptide repeat protein (PPR) proteins are putative RNA-binding proteins which are particularly prevalent in terrestrial plants. Previous research has reported the great difficulty in purifying soluble PPR proteins in Escherichia coli, therefore hindering further study of their functions. In this paper, we report the use of the pMAL prokaryotic expression system to acquire a soluble expression of a PPR protein, RF1A from rice (Oryza sativa L.). After purification, we identified RF1A by ESI-TOF-MS/MS. We also made an estimation of its secondary structure using the circular dichroism spectroscopy. These results supported the bioinformatic prediction of helical-hairpin model about PPR proteins.  相似文献   

11.
12.
13.
14.
Identification and characterization of the self-incompatibility genes in Brassicaceae species now allow typing of self-incompatibility haplotypes in natural populations. In this study we sampled and mapped all 88 individuals in a small population of Arabidopsis lyrata from Iceland. The self-incompatibility haplotypes at the SRK gene were typed for all the plants and some of their progeny and used to investigate the realized mating patterns in the population. The observed frequencies of haplotypes were found to change considerably from the parent generation to the offspring generation around their deterministic equilibria as determined from the known dominance relations among haplotypes. We provide direct evidence that the incompatibility system discriminates against matings among adjacent individuals. Multiple paternity is very common, causing mate availability among progeny of a single mother to be much larger than expected for single paternity.  相似文献   

15.
植物生长发育是一个极其复杂的生理生化过程,受内外因素共同作用。PPR蛋白是核基因编码的具有重复PPR基序的蛋白,分布广泛,在高等植物中数量巨大。PPR蛋白的靶标一般是线粒体和叶绿体中转录的RNA前体,多数可与MORF互作,参与线粒体和叶绿体基因的RNA编辑。PPR蛋白缺失的突变体植株多数呈现异常表型,影响植物的正常生长发育。本文就近年来发现的PPR蛋白结构、分布,与RNA编辑的关系,及其对植物生长发育的影响进行了综述。  相似文献   

16.
To determine whether population differentiation in flowering time is consistent with differences in current selection, we quantified phenotypic selection acting through female reproductive success on flowering phenology and floral display in two Scandinavian populations of the outcrossing, perennial herb Arabidopsis lyrata in two years. One population was located in an alpine environment strongly affected by grazing, whereas the other was close to sea level and only moderately affected by herbivory. Multiple regression models indicated directional selection for early end of flowering in one year in the lowland population, and directional selection for early start of flowering in one year in the alpine population. As expected, there was selection for more inflorescences in the lowland population. However, in the alpine population, plants with many inflorescences were selectively grazed and the number of inflorescences produced was negatively related to female fitness in one year and not significantly related to female fitness in the second year. The results are consistent with the hypothesis that genetic differentiation in flowering phenology between the study populations is adaptive, and indicate that interactions with selective grazers may strongly influence selection on floral display in A. lyrata.  相似文献   

17.
Kärkkäinen K  Agren J 《Hereditas》2002,136(3):219-226
Leaf trichomes may protect plants against herbivorous insects, and may increase tolerance to drought and UV-radiation. The perennial herb Arabidopsis lyrata (Brassicaceae) is polymorphic for trichome production and occurs in a glabrous and trichome-producing form. In addition, there is quantitative variation in trichome density among trichome-producing plants. To examine the genetic basis of glabrousness, we conducted controlled crosses with plants originating from two natural populations in Sweden (one polymorphic for trichome-production, and one consisting of glabrous plants only). In addition, we estimated the heritability of trichome number from parent-offspring regressions for plants originating from the polymorphic population. Crosses between glabrous plants resulted in glabrous offspring only, whereas crosses between glabrous and trichome-producing plants, and crosses between trichome-producing individuals, resulted in either all trichome-producing offspring or both phenotypes. In segregating crosses between trichome-producing plants, the ratio of glabrous:trichome-producing offspring did not deviate significantly from 1:3, while in segregating crosses between glabrous and trichome-producing individuals the ratio did in most cases not deviate from 1:1. Within- and between-population crosses gave similar results. The heritability of trichome number estimated from regression of offspring on mid-parent was high (h2 +/- SE, 0.65 +/- 0.15). The results suggest that glabrousness is inherited in a simple Mendelian fashion, with the allele coding for trichome production being dominant over that for glabrousness. They further indicate that glabrousness is due to a mutation at the same locus in both populations.  相似文献   

18.
Population genetic structure of Arabidopsis lyrata in Europe   总被引:2,自引:0,他引:2  
Population genetic theory predicts that the self-incompatible and perennial herb, Arabidopsis lyrata, will have a genetic structure that differs from the self-fertilizing, annual Arabidopsis thaliana. We quantified the genetic structure for eight populations of A. lyrata ssp. petraea in historically nonglaciated regions of central Europe. Analysis of 20 microsatellite loci for 344 individuals demonstrated that, in accordance with predictions, diploid populations had high genome-wide heterozygosity (H(O) = 0.48; H(E) = 0.52), high within-population diversity (83% of total) compatible with mutation-drift equilibrium, and moderate differentiation among populations (F(ST) = 0.17). Within a single population, the vast majority of genetic variability (92%) was found at the smallest spatial scale (< 3 m). Although there was no evidence of biparental inbreeding or clonal propagation at this scale (F(IS) = 0.003), significant fine-scale spatial autocorrelation indicated localized gene flow presumably due to gravity dispersed seeds (Sp = 0.018). Limited gene flow between isolated population clusters (regions) separated by hundreds of kilometres has given rise to an isolation by distance pattern of diversification, with low, but significant, differentiation among regions (F(ST) = 0.05). The maintenance of geographically widespread polymorphisms and uniformly high diversity throughout central Europe is consistent with periglacial survival of A. lyrata ssp. petraea north of the Alps in steppe-tundra habitats during the last glacial maximum. As expected of northern and previously glaciated localities, A. lyrata in Iceland was genetically less diverse and highly differentiated from central Europe (H(E) = 0.37; F(ST) = 0.27).  相似文献   

19.
We analyzed the complete genome sequence of Arabidopsis thaliana and sequence data from 83 genes in the outcrossing A. lyrata, to better understand the role of gene expression on the strength of natural selection on synonymous and replacement sites in Arabidopsis. From data on tRNA gene abundance, we find a good concordance between codon preferences and the relative abundance of isoaccepting tRNAs in the complete A. thaliana genome, consistent with models of translational selection. Both EST-based and new quantitative measures of gene expression (MPSS) suggest that codon preferences derived from information on tRNA abundance are more strongly associated with gene expression than those obtained from multivariate analysis, which provides further support for the hypothesis that codon bias in Arabidopsis is under selection mediated by tRNA abundance. Consistent with previous results, analysis of protein evolution reveals a significant correlation between gene expression level and amino acid substitution rate. Analysis by MPSS estimates of gene expression suggests that this effect is primarily the result of a correlation between the number of tissues in which a gene is expressed and the rate of amino acid substitution, which indicates that the degree of tissue specialization may be an important determinant of the rate of protein evolution in Arabidopsis.  相似文献   

20.
串联重复序列广泛存在于真核生物的基因组中,它通过影响染色质的空间结构及基因表达从而影响生物的遗传与进化.本研究以琴叶拟南芥(Arabidopsis lyrata)基因组为材料,分析了1~50 bp重复单元的串联重复序列特征.研究发现串联重复序列在基因的5'UTR和启动子区域密度最高(8757 bp/Mb,8430 bp/Mb),而编码区CDS的密度最低(2406 bp/Mb).基因组中重复模体最高的为单核苷酸重复的T/A碱基,5'UTR中包含大量的二核苷酸重复模体,而在CDS中主要是三核酸重复模体.串联重复序列特征在琴叶拟南芥基因组不同区域的差别,显示其与基因表达和调控功能相适应.本研究深入探讨了串联重复序列在植物基因组中的特征及作用,为重复序列调控基因表达及植物基因组进化提供借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号