首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background/Aims

Familial Mediterranean Fever (FMF) has traditionally been considered to be an autosomal-recessive disease, however, it has been observed that substantial numbers of patients with FMF possess only 1 demonstrable MEFV mutation. The clinical profile of familial Mediterranean fever (FMF) may be influenced by MEFV allelic heterogeneity and other genetic and/or environmental factors.

Methodology/Principal Findings

In view of the inflammatory nature of FMF, we investigated whether serum amyloid A (SAA) and interleukin-1 beta (IL-1β) gene polymorphisms may affect the susceptibility of Japanese patients with FMF. The genotypes of the -13C/T SNP in the 5′-flanking region of the SAA1 gene and the two SNPs within exon 3 of SAA1 (2995C/T and 3010C/T polymorphisms) were determined in 83 Japanese patients with FMF and 200 healthy controls. The same samples were genotyped for IL-1β-511 (C/T) and IL-1 receptor antagonist (IL-1Ra) variable number of tandem repeat (VNTR) polymorphisms. There were no significant differences between FMF patients and healthy subjects in the genotypic distribution of IL-1β -511 (C/T), IL-1Ra VNTR and SAA2 polymorphisms. The frequencies of SAA1.1 allele were significantly lower (21.7% versus 34.0%), and inversely the frequencies of SAA1.3 allele were higher (48.8% versus 37.5%) in FMF patients compared with healthy subjects. The frequency of -13T alleles, associated with the SAA1.3 allele in the Japanese population, was significantly higher (56.0% versus 41.0%, p = 0.001) in FMF patients compared with healthy subjects.

Conclusions/Significance

Our data indicate that SAA1 gene polymorphisms, consisting of -13T/C SNP in the 5′-flanking region and SNPs within exon 3 (2995C/T and 3010C/T polymorphisms) of SAA1 gene, are associated with susceptibility to FMF in the Japanese population.  相似文献   

2.

Background

Fibromyalgia syndrome (FMS), a common, chronic, widespread musculoskeletal pain disorder found in 2% of the general population and with a preponderance of 85% in females, has both genetic and environmental contributions. Patients and their parents have high plasma levels of the chemokines MCP-1 and eotaxin, providing evidence for both a genetic and an immunological/inflammatory origin for the syndrome (Zhang et al., 2008, Exp. Biol. Med. 233: 1171–1180).

Methods and Findings

In a search for a candidate gene affecting inflammatory pathways, among five screened in our patient samples (100 probands with FMS and their parents), we found 10 rare and one common alleles for MEFV, a gene in which various compound heterozygous mutations lead to Familial Mediterranean Fever (FMF). A total of 2.63 megabases of genomic sequence of the MEFV gene were scanned by direct sequencing. The collection of rare missense mutations (all heterozygotes and tested in the aggregate) had a significant elevated frequency of transmission to affecteds (p = 0.0085, one-sided, exact binomial test). Our data provide evidence that rare missense variants of the MEFV gene are, collectively, associated with risk of FMS and are present in a subset of 15% of FMS patients. This subset had, on average, high levels of plasma IL-1β (p = 0.019) compared to FMS patients without rare variants, unaffected family members with or without rare variants, and unrelated controls of unknown genotype. IL-1β is a cytokine associated with the function of the MEFV gene and thought to be responsible for its symptoms of fever and muscle aches.

Conclusions

Since misregulation of IL-1β expression has been predicted for patients with mutations in the MEFV gene, we conclude that patients heterozygous for rare missense variants of this gene may be predisposed to FMS, possibly triggered by environmental factors.  相似文献   

3.

Background and Aims

The familial Mediterranean fever (FMF) gene (MEFV) encodes pyrin, a major regulator of the inflammasome platform controlling caspase-1 activation and IL-1β processing. Pyrin has been shown to interact with the gene product of NLRP3, NALP3/cryopyrin, also an important active member of the inflammasome. The NLRP3 region was recently reported to be associated with Crohn''s disease (CD) susceptibility. We therefore sought to evaluate MEFV as an inflammatory bowel disease (IBD) susceptibility gene.

Methodology and Results

MEFV colonic mucosal gene expression was significantly increased in experimental colitis mice models (TNBS p<0.0003; DSS p<0.006), in biopsies from CD (p<0.02) and severe ulcerative colitis (UC) patients (p<0.008). Comprehensive genetic screening of the MEFV region in the Belgian exploratory sample set (440 CD trios, 137 UC trios, 239 CD cases, 96 UC cases, and 107 healthy controls) identified SNPs located in the MEFV 5′ haplotype block that were significantly associated with UC (rs224217; p = 0.003; A allele frequency: 56% cases, 45% controls), while no CD associations were observed. Sequencing and subsequent genotyping of variants located in this associated haplotype block identified three synonymous variants (D102D/rs224225, G138G/rs224224, A165A/rs224223) and one non-synonymous variant (R202Q/rs224222) located in MEFV exon 2 that were significantly associated with UC (rs224222: p = 0.0005; A allele frequency: 32% in cases, 23% in controls). No consistent associations were observed in additional Canadian (256 CD trios, 91 UC trios) and Scottish (495 UC, 370 controls) sample sets. We note that rs224222 showed marginal association (p = 0.012; G allele frequency: 82% in cases, 70% in controls) in the Canadian sample, but with a different risk allele. None of the NLRP3 common variants were associated with UC in the Belgian-Canadian UC samples and no significant interactions were observed between NLRP3 and MEFV that could explain the observed flip-flop of the rs224222 risk allele.

Conclusion

The differences in association levels observed between the sample sets may be a consequence of distinct founder effects or of the relative small sample size of the cohorts evaluated in this study. However, the results suggest that common variants in the MEFV region do not contribute to CD and UC susceptibility.  相似文献   

4.

Background

Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disorder due to MEFV mutations and one of the most frequent Mediterranean genetic diseases. The observation of many heterozygous patients in whom a second mutated allele was excluded led to the proposal that heterozygosity could be causal. However, heterozygosity might be coincidental in many patients due to the very high rate of mutations in Mediterranean populations.

Objective

To better delineate the pathogenicity of heterozygosity in order to improve genetic counselling and disease management.

Methods

Complementary statistical approaches were used: estimation of FMF prevalence at population levels, genotype comparison in siblings from 63 familial forms, and genotype study in 557 patients from four Mediterranean populations.

Results

At the population level, we did not observe any contribution of heterozygosity to disease prevalence. In affected siblings of patients carrying two MEFV mutations, 92% carry two mutated alleles, whereas 4% are heterozygous with typical FMF diagnosis. We demonstrated statistically that patients are more likely to be heterozygous than healthy individuals, as shown by the higher ratio heterozygous carriers/non carriers in patients (p<10−7–p<0.003). The risk for heterozygotes to develop FMF was estimated between 2.1×10−3 and 5.8×10−3 and the relative risk, as compared to non carriers, between 6.3 and 8.1.

Conclusions

This is the first statistical demonstration that heterozygosity is not responsible for classical Mendelian FMF per se, but constitutes a susceptibility factor for clinically-similar multifactorial forms of the disease. We also provide a first estimate of the risk for heterozygotes to develop FMF.  相似文献   

5.

Background

Antiarrhythmic action of flecainide is based on sodium channel blockade. Beta1-adrenoceptor (β1AR) activation induces sodium channel inhibition, too. The aim of the present study was to evaluate the impact of different β1AR genotypes on antiarrhythmic action of flecainide in patients with structural heart disease and atrial fibrillation.

Methodology/Principal Findings

In 145 subjects, 87 with atrial fibrillation, genotyping was performed to identify the individual β1AR Arg389Gly and Ser49Gly polymorphism. Resting heart rate during atrial fibrillation and success of flecainide-induced cardioversion were correlated with β1AR genotype. The overall cardioversion rate with flecainide was 39%. The Arg389Arg genotype was associated with the highest cardioversion rate (55.5%; OR 3.30; 95% CI; 1.34–8.13; p = 0.003) compared to patients with Arg389Gly (29.5%; OR 0.44; 95% CI; 0.18–1.06; p = 0.066) and Gly389Gly (14%; OR 0.24; 95% CI 0.03–2.07; p = 0.17) variants. The single Ser49Gly polymorphism did not influence the conversion rate. In combination, patients with Arg389Gly-Ser49Gly genotype displayed the lowest conversion rate with 20.8% (OR 0.31; 95% CI; 0.10–0.93; p = 0.03). In patients with Arg389Arg variants the heart rate during atrial fibrillation was significantly higher (110±2.7 bpm; p = 0.03 vs. other variants) compared to Arg389Gly (104.8±2.4 bpm) and Gly389Gly (96.9±5.8 bpm) carriers. The Arg389Gly-Ser49Gly genotype was more common in patients with atrial fibrillation compared to patients without atrial fibrillation (27.6% vs. 5.2%; HR 6.98; 95% CI; 1.99–24.46; p<0.001).

Conclusions

The β1AR Arg389Arg genotype is associated with increased flecainide potency and higher heart rate during atrial fibrillation. The Arg389Gly-Ser49Gly genotype might be of predictive value for atrial fibrillation.  相似文献   

6.

Objective

Familial Mediterranean fever (FMF) is an autosomal recessive disorder characterized by recurrent attacks of fever and inflammation in the peritoneum, synovium, or pleura, accompanied by pain. The disease is associated with mutations in the Mediterranean fever (MEFV) gene, which encodes for the pyrin protein. The aim of this study was to explore the frequency and clinical significance of the R202Q (c.605G>A) polymorphism in exon 2 of the MEFV gene in a cohort of Turkish patients with FMF.

Methods

The study included 191 patients with FMF and 150 healthy controls. Genomic DNA was isolated and genotyped using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) assay for the MEFV gene R202Qpolymorphism.

Results

The genotype and allele frequencies of R202Q polymorphism showed a statistically significant difference between FMF patients and controls (p < 0.0001 and p = 0.0004, respectively) and especially the homozygous AA genotype was significantly higher in FMF patients than healthy controls (p = 0.0002; odds ratio = 6.27; 95% CI = 2.1–18.3). However no significant association was observed between clinical and demographic features of FMF patients and R202Qpolymorphism.

Conclusion

The results of this study showed that there was a high association between MEFV gene R202Q polymorphism and FMF. R202Q polymorphism should be included in routine molecular diagnosis of FMF patients.  相似文献   

7.
8.

Background

Power Doppler ultrasound (PDUS) is increasingly used to assess synovitis in Rheumatoid Arthritis (RA). Prior studies have shown correlations between PDUS scores and vessel counts, but relationships with T cell immunopathology have not been described.

Methodology/Principal Findings

PBMC were isolated from healthy controls (HC) or RA patients and stimulated ex vivo with PMA and ionomycin for 3 hours in the presence of Golgistop. Paired synovial fluid (SF) or synovial tissue (ST) were analysed where available. Intracellular expression of IL-17, IFNγ, and TNFα by CD4+ T cells was determined by flow cytometry. Synovial blood flow was evaluated by PDUS signal at the knees, wrists and metacarpophalangeal joints of RA patients. Serum, SF and fibroblast culture supernatant levels of vascular endothelial growth factor-A (VEGF-A) were measured by ELISA. The frequency of IL17+IFNγ-CD4+ T cells (Th17 cells) was significantly elevated in peripheral blood (PB) from RA patients vs. HC (median (IQR) 0.5 (0.28–1.59)% vs. 0.32 (0.21–0.54)%, p = 0.005). Th17 cells were further enriched (mean 6.6-fold increase) in RA SF relative to RA PB. Patients with active disease had a higher percentage of IL-17+ T cells in ST than patients in remission, suggesting a possible role for Th17 cells in active synovitis in RA. Indeed, the percentage of Th17 cells, but not Th1, in SF positively correlated with CRP (r = 0.51, p = 0.04) and local PDUS-defined synovitis (r = 0.61, p = 0.002). Furthermore, patients with high levels of IL-17+CD4+ T cells in SF had increased levels of the angiogenic factor VEGF-A in SF. Finally, IL-17, but not IFNγ, increased VEGF-A production by RA synovial fibroblasts in vitro.

Conclusions/Significance

Our data demonstrate a link between the presence of pro-inflammatory Th17 cells in SF and local PDUS scores, and offer a novel immunological explanation for the observation that rapid joint damage progression occurs in patients with persistent positive PDUS signal.  相似文献   

9.
Familial Mediterranean fever (FMF) is a hereditary autoinflammatory disorder caused by mutations in the MEFV gene. The disease is especially common among Armenian, Turkish, Jewish and Middle East Arab populations. To identify the frequency and the spectrum of common MEFV mutations in different Iranian populations, we investigated a cohort of 208 unselected asymptomatic individuals and 743 FMF patients. Nine hundred and fifty-one samples were analysed for the presence of 12 MEFV mutations by PCR and reverse-hybridization (FMF StripAssay, ViennaLab, Vienna, Austria). Confirmatory dideoxy sequencing of all MEFV gene exons was performed for 39 patients. Fifty-seven (27.4%) healthy individual carried mutant MEFV alleles. Three hundred and ninety-one (52.6%) FMF patients were found positive for either one (172/743; 23.1%), two or three MEFV mutations. Using dideoxy sequencing, three novel variants, A66P, R202W and H300Q, could be identified. Our analysis revealed an allele frequency and carrier rate of 15.6 and 27.4%, respectively, among healthy Iranians. Still moderate compared to neighbouring Armenia, but higher than in Turkey or Iraq, these data suggest that FMF is remarkably common among Iranian populations. E148Q was most frequent in the group of healthy individuals, whereas M694V was the most common mutation among FMF patients, thereby corroborating previous studies on MEFV mutational spectra in the Middle East. Accordingly, MEFV mutations are frequent in healthy Iranian individuals across different ethnic groups. Based on this finding, the awareness for FMF and the implementation of augmented carrier screening programmes considering the multiethnic nature of the Iranian population should be promoted.  相似文献   

10.

Objectives

To determine whether the interleukin-33 (IL-33)-interleukin-1 receptor like 1 (IL-1RL1) signaling pathway is implicated in the risk of subclinical atherosclerosis in patients with rheumatoid arthritis (RA).

Methods

A total of 576 Spanish RA patients from Northern Spain were genotyped for 6 well-known IL33-IL1RL1 polymorphisms (IL33 rs3939286, IL33 rs7025417, IL33 rs7044343, IL1RL1 rs2058660, IL1RL1 rs2310173 and IL1RL1 rs13015714) by TaqMan genotyping assay. The presence of subclinical atherosclerosis was determined by the assessment of carotid intima-media thickness (cIMT) by carotid ultrasound (US).

Results

RA patients carrying the TT genotype of the IL33 rs3939286 polymorphism had lower cIMT values than those homozygous for the CC genotype (mean ± standard deviation (SD): 0.71 ± 0.14 mm versus 0.76 ± 0.16 mm, respectively) while patients carrying the CT genotype had intermediate cIMT values (mean ± SD: 0.73 ± 0.17 mm). Moreover, RA patients carrying the mutant allele T of the IL33 rs3939286 polymorphism exhibited significantly lower cIMT values than those carrying the wild allele C (mean ± SD: 0.72 ± 0.16 mm versus 0.75 ± 0.18 mm respectively; p = 0.04). The association of both genotype and allele frequencies of IL33 rs3939286 and cIMT levels remained statistically significant after adjustment for sex, age at the time of US study, follow-up and center (p = 0.006 and p = 0.0023, respectively), evidencing that the potential effect conferred by IL33 rs3939286 may be independent of confounder factors. No association with other IL33-IL1RL1 genetic variants was observed.

Conclusions

In conclusion, our results may suggest a potential protective effect of the IL33 rs3939286 allele T in the risk of subclinical atherosclerosis in patients with RA.  相似文献   

11.

Introduction

To investigate how markers of β-cell secretion (proinsulin-processing metabolites) are expressed in rheumatoid arthritis (RA) patients and their potential relation with the insulin resistance (IR) observed in these patients.

Methods

The 101 RA patients and 99 nondiabetic sex- and age-matched controls were included. IR by homeostatic model assessment (HOMA2), and β-cell secretion, as measured by insulin, split and intact proinsulin, and C-peptide levels were determined for both groups. Multiple regression analysis was performed to compare IR between groups and to explore the interrelations between RA features, proinsulin metabolites, and IR. Data were adjusted for glucocorticoids intake and for IR classic risk factors.

Results

Compared with controls, RA patients showed higher HOMA-IR (β coef., 0.40 (95% CI, 0.20 to 0.59); P = 0.00). When data were adjusted for glucocorticoids intake, noncorticosteroid patients maintained a higher IR index (β, 0.14 (0.05 to 0.24); P = 0.00). Impaired insulin processing in RA patients was detected by the onset of elevated split proinsulin levels (β, 0.70 pmol/L (0.38 to 1.02); P = 0.00). These data remained significant also when adjusted for prednisone intake (β, 0.19 (0.00 to 0.36) pmol/L; P = 0.04). Split proinsulin-to-C-peptide ratios were higher in RA patients undergoing corticosteroid therapy (β, 0.25 (0.12 to 0.38); P = 0.03) and were nearly significant in comparison between noncorticosteroids patients and controls (β, 0.16 (-0.02 to 0.34); P = 0.08). Interestingly, the impact of HOMA-IR on the ratio of intact proinsulin to C-peptide was higher in controls compared with patients (β, 6.23 (1.41 to 11.06) versus 0.43 (-0.86 to 1.71); P = 0.03).

Conclusions

β-Cell function is impaired in nondiabetic and in RA patients not taking corticoids by a mechanism that seems to be, at least in part, independent of IR.  相似文献   

12.
Familial Mediterranean fever (FMF) is a recessive disorder of inflammation caused by mutations in a gene (designatedMEFV) on chromosome 16p13.3. We have recently constructed a 1-Mb cosmid contig that includes the FMF critical region. Here we show genotype data for 12 markers from our physical map, including 5 newly identified microsatellites, in FMF families. Intrafamilial recombinations placedMEFVin the ∼285 kb betweenD16S468/D16S3070andD16S3376.We observed significant linkage disequilibrium in the North African Jewish population, and historical recombinants in the founder haplotype placedMEFVbetweenD16S3082andD16S3373(∼200 kb). In smaller panels of Iraqi Jewish, Arab, and Armenian families, there were significant allelic associations only forD16S3370andD16S2617among the Armenians. A sizable minority of Iraqi Jewish and Armenian carrier chromosomes appeared to be derived from the North African Jewish ancestral haplotype. We observed a unique FMF haplotype common to Iraqi Jews, Arabs, and Armenians and two other haplotypes restricted to either the Iraqi Jewish or the Armenian population. These data support the view that a few major mutations account for a large percentage of the cases of FMF and suggest that some of these mutations arose before the affected Middle Eastern populations diverged from one another.  相似文献   

13.
14.

Background

Pharmacogenetics involves complex interactions of gene products affecting pharmacodynamics and pharmacokinetics, but there is little information on the interaction of multiple genetic modifiers of drug response. Bucindolol is a β-blocker/sympatholytic agent whose efficacy is modulated by polymorphisms in the primary target (β1 adrenergic receptor [AR] Arg389 Gly on cardiac myocytes) and a secondary target modifier (α2C AR Ins [wild-type (Wt)] 322–325 deletion [Del] on cardiac adrenergic neurons). The major allele homozygotes and minor allele carriers of each polymorphism are respectively associated with efficacy enhancement and loss, creating the possibility for genotype combination interactions that can be measured by clinical trial methodology.

Methodology

In a 1,040 patient substudy of a bucindolol vs. placebo heart failure clinical trial, we tested the hypothesis that combinations of β1389 and α2C322–325 polymorphisms are additive for both efficacy enhancement and loss. Additionally, norepinephrine (NE) affinity for β1389 AR variants was measured in human explanted left ventricles.

Principal Findings

The combination of β1389 Arg+α2C322–325 Wt major allele homozygotes (47% of the trial population) was non-additive for efficacy enhancement across six clinical endpoints, with an average efficacy increase of 1.70-fold vs. 2.32-fold in β1389 Arg homozygotes+α2C322–325 Del minor allele carriers. In contrast, the minor allele carrier combination (13% subset) exhibited additive efficacy loss. These disparate effects are likely due to the higher proportion (42% vs. 8.7%, P = 0.009) of high-affinity NE binding sites in β1389 Arg vs. Gly ARs, which converts α2CDel minor allele-associated NE lowering from a therapeutic liability to a benefit.

Conclusions

On combination, the two sets of AR polymorphisms 1) influenced bucindolol efficacy seemingly unpredictably but consistent with their pharmacologic interactions, and 2) identified subpopulations with enhanced (β1389 Arg homozygotes), intermediate (β1389 Gly carriers+α2C322–325 Wt homozygotes), and no (β1389 Gly carriers+α2C322–325 Del carriers) efficacy.  相似文献   

15.

Background

Fc gamma receptors (FcγRs) play a crucial role in immunity by linking IgG antibody-mediated responses with cellular effector and regulatory functions. Genetic variants in these receptors have been previously identified as risk factors for several chronic inflammatory conditions. The present study aimed to investigate the presence of copy number variations (CNVs) in the FCGR3B gene and its potential association with the autoimmune disease rheumatoid arthritis (RA).

Methodology/Principal Findings

CNV of the FCGR3B gene was studied using Multiplex Ligation Dependent Probe Amplification (MLPA) in 518 Dutch RA patients and 304 healthy controls. Surprisingly, three independent MLPA probes targeting the FCGR3B promoter measured different CNV frequencies, with probe#1 and #2 measuring 0 to 5 gene copies and probe#3 showing little evidence of CNV. Quantitative-PCR correlated with the copy number results from MLPA probe#2, which detected low copy number (1 copy) in 6.7% and high copy number (≥3 copies) in 9.4% of the control population. No significant difference was observed between RA patients and the healthy controls, neither in the low copy nor the high copy number groups (p-values = 0.36 and 0.71, respectively). Sequencing of the FCGR3B promoter region revealed an insertion/deletion (indel) that explained the disparate CNV results of MLPA probe#1. Finally, a non-significant trend was found between the novel -256A>TG indel and RA (40.7% in healthy controls versus 35.9% in RA patients; P = 0.08).

Conclusions/Significance

The current study highlights the complexity and poor characterization of the FCGR3B gene sequence, indicating that the design and interpretation of genotyping assays based on specific probe sequences must be performed with caution. Nonetheless, we confirmed the presence of CNV and identified novel polymorphisms in the FCGR3B gene in the Dutch population. Although no association was found between RA and FCGR3B CNV, the possible protective effect of the -256A>TG indel polymorphism must be addressed in larger studies.  相似文献   

16.

Objective

A meta-analysis was applied to evaluate the associations between tumor necrosis factor-α (TNF-α) −308G>A (rs1800629) polymorphism and type 2 diabetes mellitus (T2DM).

Methods

Hardy-Weinberg equilibrium (HWE) was employed to test genetic equilibrium among the genotypes of the selected literature. Power analysis was performed with the Power and Sample Size Calculation (PS) program. A fixed or random effect model was used on the basis of heterogeneity. Publication bias was quantified and examined with the Begg''s funnel plot test and Egger''s linear regression test. The meta-analysis was performed with Review Manager 5.1 and Stata 11.0.

Results

There were 10 studies including 1425 T2DM patients and 1116 healthy control subjects involved in this meta-analysis. No significant publication bias was found in the studies. The pooled ORs (95% CIs) for TNF-α −308G>A of A vs. G allele and GA+AA vs. GG genotype were 1.63 (1.17–2.25) and 1.47 (1.17–1.85), respectively.

Conclusion

This meta-analysis result suggested that TNF-α −308G>A polymorphism was strongly associated with T2DM risk, and A allele at this locus might be a susceptibility allele for the development of T2DM in Han Chinese population.  相似文献   

17.

Introduction

Adalimumab is a fully human anti–tumor necrosis factor α (anti-TNFα) monoclonal antibody that specifically blocks the interaction of TNFα with its receptors. It binds both soluble and transmembrane TNFα. We hypothesized that blocking these TNFα signals regulates the altered TNFα production in rheumatoid arthritis (RA) patients.

Methods

We compared, by flow cytometry, Toll-like receptor induction levels of membrane and intracellular TNFα in monocytes (iTNFα + CD14+ cells) from 12 patients before and after adalimumab treatment with those from 5 healthy donors.

Results

Before starting the treatment, the percentage of iTNFα+ CD14+ cells in the RA patients was significantly lower than that in healthy donors (mean ± SEM = 33.16 ± 4.82% vs 66.51 ± 2.4%, P < 0.001). When we added in vitro TNFα to healthy donor culture cells, levels of iTNFα+ CD14+ cells decreased, suggesting that the TNFα signal was responsible for the iTNFα+ CD14+ cell downregulation observed in the RA patients. After 2, 6 and 12 adalimumab injections, we observed significant blocking of membrane and soluble TNFα and a progressive increase in iTNFα+ CD14+ cells in ten patients with a good to moderate response as defined by the European League Against Rheumatism (EULAR) criteria. Levels of iTNFα+ CD14+ cells after 12 injections in these 10 patients were comparable to levels in healthy donors. In two patients, iTNFα+ CD14+ cell upregulation was not observed, and their EULAR-defined responses had not improved. The first patient developed antiadalimumab antibodies, explaining why adalimumab was not able to block membrane and soluble TNFα. In the second patient, adalimumab was discontinued because of adverse effects, which led to a decrease in iTNFα+ CD14+ cells to levels measured before treatment.

Conclusions

Our findings suggest that adalimumab treatment in RA patients can return iTNFα levels to those of healthy donors. This effect was not observed in the presence of neutralizing antiadalimumab antibodies.  相似文献   

18.
Familial Mediterranean Fever (FMF) is an inherited autoinflammatory disorder characterized by unprovoked episodes of fever and inflammation. The associated gene, MEFV (Mediterranean Fever), is expressed primarily by cells of myeloid lineage and encodes the protein pyrin/TRIM20/Marenostrin. The mechanism by which mutations in pyrin alter protein function to cause episodic inflammation is controversial. To address this question, we have generated a mouse line lacking the Mefv gene by removing a 21 kb fragment containing the entire Mefv locus. While the development of immune cell populations appears normal in these animals, we show enhanced interleukin (IL) 1β release by Mefv −/− macrophages in response to a spectrum of inflammatory stimuli, including stimuli dependent on IL-1β processing by the NLRP1b, NLRP3 and NLRC4 inflammasomes. Caspase-1 activity, however, did not change under identical conditions. These results are consistent with a model in which pyrin acts to limit the release of IL-1β generated by activation and assembly of inflammasomes in response to subclinical immune challenges.  相似文献   

19.

Background

γδ T cells play an important role in infectious, autoimmune, or neoplastic diseases. Here, a study was conducted to investigate the dynamic changes in phenotype and function of peripheral γδ T cells in patients with chronic hepatitis B (CHB) during pegylated-interferon (pegIFN)-α treatment, and to explore their roles in IFN-α therapy.

Methods

Total 15 CHB patients with pegIFN-α therapy and 6 healthy controls (HC) were enrolled in this study. Flow cytometry was used for the study of frequency of peripheral γδ T cells, subtypes, effector or memory γδ T cells, and also the IFN-γ+, TNF-α+, CD107a+ or Granzyme B+ γδ T cells in 10 patients at week 0, 4, 8, 12, 24, 36 and 48 of treatment. Another 5 CHB patients and 6 HC were recruited for the γδ T cell isolation, and gene expression in γδ T cells was evaluated before or after IFN-α treatment in vitro.

Results

Although γδT cells decreased in CHB patients during pegIFN-α therapy, their capacities to produce TNF-α and to express CD107a were enhanced. More effector γδT cells (CD27-CD45RA+) were found in the response group than in non-response group. Furthermore, IFN-α boosted the expression of Mx2 and cytokine genes in γδT cells from CHB patients in vitro.

Conclusion

IFN-α could enhance the cytokine production or cytotoxicity potential of γδT cells in vivo and in vitro. The enhanced function of γδT cells might contribute to the effect of IFN-α treatment.  相似文献   

20.

Introduction

Rheumatoid arthritis (RA) is a complex polygenic disease associated with chronic inflammation, accelerated atherosclerosis and increased cardiovascular (CV) mortality. A recent meta-analysis has described the ZC3HC1 rs11556924 polymorphism as one of the most important signals associated with coronary artery disease (CAD) in non-rheumatic Caucasian individuals. In this study we evaluated the potential association of this gene polymorphism with subclinical atherosclerosis assessed by the evaluation of carotid intima-media thickness (cIMT) in RA patients.

Methods

This study included 502 RA patients from Northern Spain. The ZC3HC1 rs11556924 polymorphism was genotyped with TaqMan single-nucleotide polymorphism (SNP) genotyping assays (C__31283062_10) in a 7900HT real-time polymerase chain reaction (PCR) system. cIMT was also assessed in these patients by carotid ultrasonography (US) technology.

Results

RA patients carrying the TT genotype had significantly higher cIMT values than those homozygous for the CC genotype (mean ± standard deviation (SD): 0.76 ± 0.18 mm and mean ± SD: 0.71 ± 0.16 mm respectively; P = 0.03) even after adjusting the results for sex, age at the time of US study, follow-up time and traditional CV risk factors (P = 0.04) evidencing that the effect conferred by ZC3HC1 rs11556924 polymorphism is independent of the traditional CV risk factors.

Conclusion

Our results indicate that ZC3HC1 rs11556924 polymorphism is associated with subclinical atherosclerosis in RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号